Wolfram Researchmathworld.wolfram.comOther Wolfram Sites
Search Site

INDEX
Algebra
Applied Mathematics
Calculus and Analysis
Discrete Mathematics
Foundations of Mathematics
Geometry
History and Terminology
Number Theory
Probability and Statistics
Recreational Mathematics
Topology
Alphabetical Index

ABOUT THIS SITE
About MathWorld
About the Author
Terms of Use

DESTINATIONS
What's New
MathWorld Headline News
Random Entry
Animations
Live 3D Graphics

CONTACT
Email Comments
Contribute!
Sign the Guestbook

MATHWORLD - IN PRINT
Order book from Amazon

Parrondo's Paradox

Two losing gambling games can be set up so that when they are played one after the other, they become winning. There are many ways to construct such scenarios, the simplest of which uses three biased coins (Harmer and Abbott 1999).

Links search




References

Doering, C. R. "Randomly Rattled Ratchets." Il Nuovo Cimento 17D, 685-697, 1995.

Harmer, G. P. and Abbott, D. "Losing Strategies Can Win by Parrondo's Paradox." Nature 402, 864, 1999.

Harmer, G. P.; Abbott, D.; Taylor, P. G.; and Parrondo, J. M. R. "Parrondo's Paradoxical Games and the Discrete Brownian Ratchet." In Proc. 2nd Internat. Conf. Unsolved Problems of Noise and Fluctuations, 11-15 July, Adelaide (Ed. D. Abbott and L. B. Kiss). Melville, NY: Amer. Inst. Physics Press, pp. 189-200, 2000.

Harmer, G. P.; Abbott, D.; Taylor, P. G.; Pearce, C. E. M.; and Parrondo, J. M. R. "Information Entropy and Parrondo's Discrete-Time Ratchet." In Proc. Stochastic and Chaotic Dynamics in the Lakes, 16-20 August, Ambleside, UK (Ed. P. V. E. McClintock). Melville, NY: Amer. Inst. Physics Press, pp. 544-549, 2000.

McClintock, P. V. E. "Unsolved Problems of Noise." Nature 401, 23-25, 1999.

Pearce, C. E. M. "Entropy, Markov Information Sources and Parrondo Games." In Proc. 2nd Internat. Conf. Unsolved Problems of Noise and Fluctuations, 11-15 July, Adelaide (Ed. D. Abbott and L. B. Kiss). Melville, NY: Amer. Inst. Physics Press, pp. 207-212, 2000.

Pearce, C. E. M. "On Parrondo's Paradoxical Games." In Proc. 2nd Internat. Conf. Unsolved Problems of Noise and Fluctuations, 11-15 July, Adelaide (Ed. D. Abbott and L. B. Kiss). Melville, NY: Amer. Inst. Physics Press, pp. 201-206, 2000.




cite this as

Eric W. Weisstein. "Parrondo's Paradox." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/ParrondosParadox.html



header
mathematica calculationcenter