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Superluminous Three-Wave Solitary Brillouin
Structures

Éric Picholle and Carlos Montes

Abstract—Self-similar deformation of three-wave stimulated
Brillouin scattering (SBS) dissipative structures (“Brillouin
quasi-solitons”) yields superluminous behaviors. The authors
discuss the relevancy of the various velocities involved in the
nonlinear propagation of such complex structures, both in the
ideal semi-infinite case and in a real-world Brillouin fiber ring
laser experiment. Optical and acoustical group velocities greater
than are shown to occur during pulse propagation in SBS soliton
lasers.

Index Terms—Solitons, Sommerfeld & Brillouin, stimulated
Brillouin scattering (SBS), superluminal propagation, superlumi-
nous propagation, velocity of light.

I. INTRODUCTION

A LTHOUGH many pseudo-paradoxes about “faster-than-
light” propagation continue to haunt popular science

media, science fiction, and even scientific literature, their
solution has been well understood since 1913 and the works of
Sommerfeld and Brillouin; indeed, they introduced a crucial
distinction between phase, group, signal, front, and energy
transport velocities of a light pulse [1] after Sommerfeld’s
prediction of group velocities higher than the velocity of light
in vacuum, [2].

Following the distinction introduced by Chiao [3], two main
classes of laser pulse propagation with velocities greater than

can be considered, the shape of the pulse being either con-
served in asuperluminallinear interaction (usually in a disper-
sive medium, near an absorption line [4]) or deformed through
asuperluminousnonlinear interaction between matter and light
(for instance a saturated gain mechanism [5], [6] or a coherent
scattering process [7]). Gain-assisted superluminal light propa-
gation constitutes an intermediary class [8].

We will hereafter define the group and signal velocities,
respectively, as the velocities at which the peak of a wave
packet and the half-maximum wave amplitude would move
[1], [3]. Nevertheless, even these simple definitions are hardly
intuitive in the presence of nonlinear pulse reshaping [6]. The
very concept of group of waves lies on an implicit hypothesis
that a regular univoquely identifiable pattern is maintained
during the propagation [9]. Yet, the splitting of a single wave
packet into two daughter packets, or inversely the fusion of
two pulses, is nothing unusual in nonlinear optics, yielding
various pseudo-paradoxes depending on arbitrary conventions.
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Fig. 1. (a) Periodic exchanges of stability between two subpulses in the output
of a Brillouin fiber ring laser (see [10]). (b) Numerical simulation of the same
regime; only the maxima (peak amplitudes) are plotted. The group velocity has
little sense in the blackened regions where such exchanges of stability take place.
(c) Same as (b), but in a different regime; a stable pulsed (quasisolitonic) output
is attained after some very long (�1000 roundtrip times) transients.

For instance, considering that a single group of waves remains
itself through a splitting process yields a discontinuity of the
group velocity whenever the relative heights of the subpulses
are exchanged [Fig. 1(a) and (b)]; reciprocally, the arbitrary
distinction of two separated daughter pulses yields a disconti-
nuity on the signal velocity. Other examples can be found in the
dynamics of lasers, as in our Brillouin fiber ring experiment,
fully described in [10] and [11].

These concepts, nevertheless, recover all their relevancy
when the shape of a given pulse is conserved throughout its
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nonlinear propagation. The group and signal velocities are then
equivalent. An obvious example is the well-known first order
“nonlinear Schrödinger” (NLS) soliton where the linear group
velocity dispersion is exactly compensated by the nonlinear
optical Kerr effect [12]. In this paper, we will address a dif-
ferent highly nonlinear regime involving self-similar reshaping,
namely, the propagation of sub- or superluminous Brillouin
solitary three-wave structures. We will focus the present
discussion on their velocity properties; a thorough discussion
of the now classical three-wave model of stimulated Brillouin
scattering (SBS) can be found in [13] and the general properties
of three-wave solitary Brillouin structures in [11], [14]–[16].

II. STIMULATED BRILLOUIN SCATTERING IN IDEAL

SEMI-INFINITE OPTICAL FIBERS

SBS is the coherent (i.e., phase-sensitive) resonant interaction
between two optical and one acoustic wave [17]. Single-mode
optical fibers are fairly one-dimensional media, in which effec-
tive SBS energy transfers can occur when a forward (by con-
vention) “pump” wave is backscattered into a coun-
terpropagating “Brillouin” wave through its
electrostrictive interaction with a forward longitudinal acoustic
wave . In our experi-
ments, the pump wavelength is 532 nm, yielding an hypersonic
frequency GHz and an acoustic damping time in
the 10-ns range. This will also be the typical duration of Bril-
louin pulses created through SBS; the linear group velocity dis-
persion can thus be neglected in this three-wave model of SBS
in fibers, whose numerical simulations account for optical and
material losses, Langevin-type “thermal” noise [18], as well as
the perturbative optical Kerr effect [13]. Note that this coherent
model describes only the reshaping of slowly varying envelopes,
and thus neglects carrier effects such as the low-level forerun-
ners following the true front of an ideal finite-support pulse [1],
[2].

When a continuous wave (cw) pump wave encounters
nothing but a weak thermal acoustic noise in the fiber, only
Stokes energy transfers, from the pump to the Brillouin and
acoustic waves, can be stimulated. Above the threshold, this
instability yields the so-called “Brillouin mirror,” highly
detrimental to optical telecommunications. More interesting
dynamical regimes can be obtained when the fiber is already
filled with an intense acoustic wave (usually as a material
memory of previous interactions); antiStokes processes are
then possible, the pump being rebuilt at the expense of the two
other waves. The local SBS gain then depends on the relative
phases of the three waves ( , conven-
tionally positive in the Stokes regime). For high enough optical
intensities, this property induces a very robust self-cleaning
process on the phase of the Brillouin wave [7], whose linewidth
can thus be as narrow as a few hertz for a megahertz pump
width [19].

Here, we are interested in highly nonlinear regimes, where
the pump can be strongly depleted within the duration of a
short Brillouin pulse or the acoustic damping time. Neglecting
both the optical Kerr effect and thermal noise, the coherent
three-wave model of SBS admits stable solitary solutions in

Fig. 2. Spatial distribution of the amplitudes in the three-wave solitary SBS
structure in a semi-infinite medium: pump(E ), Brillouin (E ), and acoustic
(E ). Additional information superimposed over a superluminous Brillouin
solitary wave travels at luminal velocity (i.e., stationary in this travelling frame)
and thus drifts toward the pulse’s tail. Note the stability of the structure against
a strong indentation and its progressive elimination (numerical).

ideal semi-infinite media (Fig. 2), where the amplification of
the leading edge of the backward propagating structure exactly
compensates the depletion of the trailing edge (either due to
the losses or, in the undamped problem, to anti-Stokes SBS
processes).

This exact but nonlocal compensation yields a global drift
of the structure whose shape remains globally unchanged, or
rather endures a constant self-similar deformation. For vanish-
ingly small losses, it can be shown analytically that these struc-
tures are actual solitons, in the sense of the inverse scattering
transform [20].

The group and signal velocities of these asymptotically
stable solitary waves are thus identical and superluminous
[7]. Moreover, they are obviously the same everywhere in the
structure, including its far leading edge where the Brillouin
and acoustic intensities are small enough for the pump to
remain essentially undepleted and the interaction linear. The
asymptotic Kolmogorov–Petrovskii–Piskunov (KPP) method
[21] can thus be implemented to determine the velocity of
the whole structure, which depends only on its exponential
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slope. The softer the leading edge, the wider and the faster
the structure [15]. Narrow enough structures even present
subluminous behaviors [10], [16].

Note that the backward propagating invariant three-wave
structure is actually composed of three components, namely
the Brillouin pulse, the associated acoustic pulse, and a pump
kink, traveling together with the velocity ,
where the effective index is . Arbitrarily high
velocities can be obtained in the ideal dissipationless case as
well as for specific relative damping values for the Brillouin

and acoustic waves (namely, [7],
[15]) and for other interaction geometries. With the actual gain
and damping parameters of our backscattering experiment, the
group and signal velocity of the Brillouin wave packet will thus
be , and . The velocity of the
acoustic wave packet will be the same, or
being the linear velocity of sound in silica, or 5960 m/s), and
the velocity of the pump wave kink .

Energy transport velocities can be defined independently for
each wave. It would then be identical to the signal velocity for
the Brillouin and acoustic waves; on the other hand, the pump
energy is classically transported with a velocity (thus
a difference between signal and energy transport
velocities). Yet, these definitions make little sense. The overall
process is essentially an energytransfer between waves and,
as far as the losses can be neglected, the three-wave structure
transports no energy but merely localizes it.

According to their quasisolitonic nature, these structures are
very stable against very strong phase or amplitude perturbations,
as shown in Fig. 2. Thus, since the solution at a later time is
not determined by the initial data, they transportno informa-
tion over long distances [22]. For an ideal solitary structure, the
only stable information (“here comes the structure”) is already
present through its infinite wings everywhere in the propaga-
tion medium at any time before the arrival of the Brillouin peak.
Any additional information will propagate at luminous veloci-
ties, drift toward the trailing edge of the structure where it will
be killed by the losses, uncompensated there by the strongly de-
pleted pump; if superimposed on the leading edge, it would be
erased even more rapidly during its crossing of the main pulse.

No front, hence no front velocity, can be defined for these
ideal semi-infinite structures. In this noiseless limit, one can ar-
bitrarily create one by setting both Brillouin and acoustic inten-
sities to zero outside a finite support far from the body of a su-
perluminous structure. This “envelope front” would then prop-
agate with a velocity ; an initially superluminous struc-
ture would thus slow down through some complex transients
while it drifts toward this discontinuity [23] and then, for a fi-
nite acoustic damping, evolve toward a subluminous attractor
[16].

A more realistic approach takes into account the thermal
acoustic noise. The effective front of the structure can then
be defined as the locus where the exponentially decreasing
leading edge of the solitary wave falls below the noise level
associated to the amplified spontaneous scattering of the
undepleted pump wave. The Brillouin dynamics of this region
is quite complicated [24], and it becomes very difficult to
distinguish the actual signal from the noise [25]. The effective

(a)

(b)

Fig. 3. Spatial distribution inside the Brillouin fiber ring at two different
times in presence of strong acoustic noise. Note the phase locking around the
high intensity region, the superluminous solitary structure being thus almost
insensitive to the amplification of the noise, and its front clearly defined
(numerical).

front velocity is nevertheless identical to the signal velocity
of the whole structure, thus eventually superluminous, since
the nonlinear phase self-cleaning process discussed above [7]
locks the phase structure around the high intensity region, the
coherent superluminous pulse thus appearing to continuously
“push” away the noise it encounters (cf. infra, Fig. 3).

More generally, since the nonlinear self-similar three-wave
reshaping process allows neither the transport of information at
superluminous velocity, nor of energy, it has very little direct ap-
plication. It is, nevertheless, of key importance in the stability of
the propagation, the robustness of a superluminous, soliton-like
structure being considerably increased against any perturbation
in the highly nonlinear regimes considered here. For instance,
a stable superluminous structure can emerge and escape from
a luminal instability that would otherwise yield to chaos when
both strong optical Kerr effect and strong group velocity disper-
sion are involved (as in the stimulated Raman backscattering,
a three-wave interaction formally equivalent to SBS but with
much lower efficiency and characteristic time [26]).

III. SOLITARY STRUCTURES IN ALOW-FINESSEBRILLOUIN

FIBER RING LASER

Most of the features discussed above can be observed exper-
imentally,mutatis mutandis, in Brillouin fiber ring lasers. This
class of SBS devices presents a very rich nonlinear dynamics,
including periodic [Fig. 1(a)], quasiperiodic, chaotic, or bistable
regimes,etc.,often attained after very long transients [Fig. 1(c)],
in very good qualitative and quantitative predictions of the co-
herent three-wave model (cf. [11] and references therein).

For long enough ( m) single-mode fiber cavities,
the SBS mirror (ultracoherent cw Brillouin laser [19]) is
obtained for high finesse and the pulsed quasisolitonic su-
perluminous regime for low finesse cavities [7], following a
regular Hopf bifurcation whose control parameter is either
the launched pump power or the Brillouin feedback
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[27]. The corre-
sponding “free space” soliton is then defined by an effective
optical damping taking into account the reinjection losses, or

[15]. Hereafter, all parameters are
taken from the experiment described in [11], namely m
and mW (launched).

The problem of the signal-to-amplified spontaneous noise
ratio remains in this cavity configuration, still governed by non-
linear phase self-cleaning process allowing a sound definition of
a front “pushed” by the structure at a front velocity equal to the
signal velocity (rather than the group velocity when they are dis-
tinct, since this mechanism depends on the structure wing slope,
which determines the signal width, rather than by the structure
peak power or overall energy), as shown in Fig. 3.

An important feature of low-finesse cw-pumped SBS soliton
ring lasers is that the nonlinear flight time of the
Brillouin pulse is a free parameter. In absence of any special
constraint, the device selects theaveragegroup and signal
velocity (still identical for stables pulses) which maximizes
the pulse energy [11]. But it can also self-adapt to optimize its
stability against external perturbations, such as an interaction
with low-frequency radial acoustic waves (namely, cladding
Brillouin scattering) corresponding to the mechanical vibration
modes of the whole fiber structure. The solitary structure
accelerates (respectively, decelerates) when confronted to a
periodic perturbation of frequency slightly above (respectively,
below) the closest multiple of the linear cavity free spectral
range , in order to find the fiber in the same vibrational
state from roundtrip to roundtrip. Since the signal velocity
of a pulse is still related to the slope of its front edge, thus
its duration, we have observed strong pulse compression and
dilatation (from 18 to 75 ns, for a “bare” duration around 30
ns) during this self-velocity-adaptation process [10].

Only these average group velocities are accessible to direct
measurement, yielding . While they
remain fairly close to those theoretically obtained in semi-infi-
nite media for pulse of the same shape and duration (the strong
reinjection cutdown being described as “distributed losses”), the
actual dynamics within the fiber resonator is much more com-
plicated.

The Brillouin pulse injected at the far end of the fiber
(left-side of Fig. 3) is homothetic to the output pulse, but with
a severe energy cutdown (by a factor 1-, or 97%) ; moreover,
no conjugate acoustic pulse is reinjected. It is thus very far from
the asymptotic solitary structure, and: (a) meets a pump already
depleted by its interaction with the pulse (during the previous
roundtrip; cf. Fig. 3, top); its width, thus its signal velocity, are
almost constant (Fig. 4), while its peak power slowly increases,
yielding a decrease in group velocity; (b) near the middle of the
cavity, the Brillouin pulse meets the pump kink created when
it left the cavity at the end of the previous roundtrip; this brief
“collision” has little effect on the pulse widht and height, but
corresponds to a very evolutive state characterized by a bump
on both signal and group velocities; (c) then interacts with a
“fresh,” weakly depleted pump, yielding a much more efficient
amplification and an increase in group velocity; and (d) finally
meets a truly undepleted (or “unprepared”) pump which has
never interacted with its front wing, already out of the cavity;

Fig. 4. Spatial evolution of the group velocity, Maximum amplitude, and
(almost constant) width of a Brillouin pulse during its backward propagation
in a stable, low-feedback, high-gain SBS soliton laser. A slightly subluminous
period of slow amplification: (a) is followed by stronger energy transfers in
the second half of the fiber, where the pulse meets an undepleted pump. The
slightly superluminous average velocity is governed by the unstable regions
(b) and (d) (numerical).

Fig. 5. Same as Fig. 4(R = 0:03). Dynamical evolution of the group and
signal velocities during one propagation cycle inside the fiber (numerical).

again, this short interaction has little effect on the pulse itself,
but corresponds to a huge increase in group velocity it ,
with a major effect on the average group velocity.

The group and signal velocities are almost equal during
phases (a) and (c), which correspond to stable propagation
regimes, with some amplification but no reshaping. They
strongly differ in phases (b) and (d) (Fig. 5), where some major
reshaping occurs while the pulse self-adapts to fit a pump step
(b) or to meet the fiber boundary. It is interesting to note that,
while average group and signal velocities are by definition
equal in a stable soliton laser, they present very different
dynamics and can locally reach very high values.

Such rapid variations in the group and signal velocities are
a fair indicator that the pulse, while globally stable, is subject
to major destabilizing factors, overcome by nonlinear self-re-
shaping. The device depicted in Figs. 4 and 5 operates very
close to the SBS laser critical feedback , thus to
the bifurcation toward a cw regime [26]. Operation parameters
deeper in the stable “solitonic” region yield smoother velocity
dynamics (Fig. 6).

IV. CONCLUSION

The concept of nonlinear pulse reshaping is very general in
the context of interactions between matter and light. Stimulated
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Fig. 6. Dynamical variations of the group velocity for three stable pulsed SBS
lasers with different feedbacks valuesR. Close to the critical feedback (top,
R = 0:3), the pulse exhibits strong self-reshaping, which is mostly avoided
farther from the bifurcation (numerical).

Brillouin scattering is archetypal of a wide class of three-wave
interactions which admit soliton-like sub- and superluminous
solutions, including the material wave and also stimulated
Raman scattering [25] and parametric interaction in quadratic
nonlinear media [28]. It would be intriguing to explore the as-
sociated “nontraditional forms of matter” nonlinearly coupled
to superluminous light structures at the quantum wavefunction
level [29], [30]. It can also be noted that nonlinear reshaping of
solitonic nature may occur in the frequency space [31].
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