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Abstract

Inside diffractive structures, the intensity maximum of optical pulses can travel with a velocity exceeding the vacuum
speed of light. This effect is due to the occurrence of evanescent waves, and is accompanied by strong attenuation. It is
emphasized that, due to the attenuation, causality is not violated. q 1999 Elsevier Science B.V. All rights reserved.

PACS: 42.25.Fx; 42.25.Bs; 42.79.Dj

1. Introduction

Superluminal phenomena, i.e. phenomena involving ve-
locities exceeding the speed of light in vacuum, occur in

w xvarious systems 1,2 . The mechanism behind these situa-
tions are quantum mechanical or electromagnetic tunneling

w xprocesses 1,3–10 . The analogy between the tunneling of
electromagnetic waves and the quantum mechanical tun-

w xneling of particles has been stressed 11 , indicating that
electromagnetic tunneling may be considered as a useful
tool to study the traversal of a quantum mechanical barrier.
Microwave experiments confirm the occurrence of superlu-

w xminal tunneling velocities 12 . The experimental results
are found to be in good agreement with calculations based

w xon Maxwell’s equations 13,14 . Recently, it was pointed
out that related phenomena may also occur in diffractive

w xoptics 15 .
Since classical electrodynamics is an inherently causal

theory, there is only an apparent violation of causality.
Upon tunneling of a wave packet, the intensity is reduced
drastically, and at every instant the intensity of a transmit-
ted pulse is less than it would be in the absence of the
structure that enforces the tunneling process. A difficulty
arises from the fact that customary notions such as phase
velocity or group velocity are not usefully applicable to

evanescent waves, because their wave vector is imaginary.
The velocity of the maximum of an intensity distribution,
as considered in this paper, is not a suitable definition of a
velocity to check for an eventual violation of causality. It
is widely accepted that the front velocity of a truly tempo-
rally limited pulse can be employed for such an endeavor;
no superluminal front velocity and, thus, no violation of
causality has been observed.

Upon transmission of a pulse through an inverted two-
level medium, a superluminal group velocity has been
reported, where the transmission is not accompanied by an

w xattenuation 6 . This observation was explained as a fully
causal pulse reshaping phenomenon, because transmitted
information can be obtained from both the pulse’s maxi-
mum and its front tail just as well.

2. Numerical treatment

In this paper, the temporal behavior upon transmission
of an optical pulse through a diffractive structure is exam-
ined numerically. A Gaussian pulse incident on a diffrac-
tive structure can be represented by a superposition of

Ž .plane waves of different wavelengths frequencies . The
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spectrum of the pulse is assumed to be a Gaussian with
half-width s centered around v . Then, the field isv 0

2
vyv` Ž .0

E t s dv u exp y exp iv t . 1Ž . Ž . Ž .H 0 2½ 52s` v

The diffraction problem requires the introduction of com-
Ž .plex coefficients of the reflection R v and the transmis-

Ž .sion T v of each plane wave. This results in a transmitted
wave packet

E tŽ .t

2
vyvŽ .0

< <su FF exp y T v exp iF v ,� 4Ž . Ž .0 2½ 5ž /2sv

2Ž .

Ž .where the coefficient of transmission is T v s
< Ž . < � Ž .4T v exp iF v and FF denotes a Fourier transform.
Provided that the incident pulse is long enough—or its
spectrum is narrow enough—the phase of the coefficient
of transmission is approximately linear in v and its modu-
lus is approximately constant, and the transmitted field
may be written

EF EF
< <E t , T exp i F y v E t md tq ,Ž . Ž .t 0 0½ 5ž / ž /Ev Ev

3Ž .

where m indicates a convolution. Apart from a constant
factor, this is the incident field temporally shifted by
D tsyEFrEv. This indicates the importance of the phase
F of the diffraction coefficients. If the assumptions men-
tioned above do not hold, diffraction will in general result
in a transmitted wave that deviates from the Gaussian
shape.

In order to make the diffraction problem amenable to
numerical treatment, the coefficients of transmission are
evaluated at a finite number of frequencies v sv qn 0

n Dv, nsyN,.., N around the center v of the spectrum.0
Ž .The Fourier transform of Eq. 2 is replaced by a discrete

Fourier transform. The diffraction coefficients are calcu-
w xlated utilizing a rigorous numerical method 16,17 .

The origin is chosen such that the maximum of inten-
sity of the incident wave packet traverses the front plane of
the structure at ts0. The calculated intensity profile is the
time-dependent intensity in the rear plane zsh. The field
in this plane varies with x. The 0th diffraction order is
constant across zsh. In order to consider the x-depen-
dence, higher diffraction orders have to be taken into
account. According to the Bragg condition k sk qinc out

< < < <mK and k s k , where K is the grating vector andinc out

m the diffraction order, these higher orders do not propa-
gate when the period of the structure is smaller than the
wavelength and do not contribute to the energy transport
into the far-field. An x-dependence can no longer be
observed at several wavelengths behind the grating.

3. Properties of the diffractive structure

A metallic grating period ds0.5 mm and refractive
index n s1.55q i 7.91 is deposited on a semi-infinitemetal

Ž .dielectric substrate Fig. 1 . The assumption of the wave-
length-dependent refractive index of aluminium shows that
the results are not qualitatively affected by this simplifica-
tion. The substrate of refractive index ns1.40 fills the
half-space z-0. Vacuum exists in region 3 behind the
grating as well as in the interstices between the metal
stripes. The width of the metallic blocks is half a grating
period. Unless stated otherwise, the grating height is hs
0.50 mm. The grating is illuminated by a pulse of light of a
mean wavelength of ls0.85 mm. The pulse is normally
incident from the substrate side and is TE-polarized, i.e.,
the electric field is perpendicular to x and z.

Since the grating period is smaller than the wavelengths
l in vacuum and l slrn in region 1, only the 0th1 1

diffraction order can propagate in transmission and reflec-
tion and higher orders are not considered. As a simple
model, the grating can be considered as a periodic arrange-
ment of short planar waveguides in the z-direction. Since
the width dr2 of the waveguides is smaller than the
wavelength, the field in the waveguides is evanescent, i.e.
exponentially decaying along the z-axis. The crucial dif-
ference compared to an exponentially decaying wave in an
absorbing medium is that the wave does not exhibit a
periodicity and that its phase is constant in the direction of
propagation. Guided modes do not exist for l)l sd.cutoff

Fig. 2 shows the diffraction efficiency of the 0th
diffraction order of the grating as a function of the wave-
length. Above the cutoff at 0.50 mm the diffraction effi-
ciency h in transmission falls to zero, while in reflection it
rises to 84.6%. 15.4% of the energy is absorbed in the
metal in the limit of long wavelengths. Below cutoff h is
influenced by a complicated interaction between wave and
matter, which cannot be satisfactorily described in a simple
model; energy is diffracted into higher diffraction orders.
The result is a curve with numerous extrema.

Fig. 1. Geometry of the binary metallic grating and notations.
n s1.40, n s1.55q i 7.91, n s 1, ds0.5 mm, hs0.51 metal 3

mm.
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Fig. 2. Diffraction efficiency of the grating versus wavelength.

There is no sharp cutoff at ls0.5 mm, because the
cutoff phenomenon is a result of the assumption that the
waveguide is infinitely extended. However, at ls0.85
mm these interactions do not have to be taken into account.

Upon transmission through the grating the wave is
exponentially damped. To compare the temporal behavior
of the transmitted wave with a wave that propagates the
same distance h through vacuum, it is expedient to plot the
intensity normalized in such a way that the area under each
curve is unity. The intensity is measured at zsh. The
origin is chosen such that at ts0 the maximum intensity
occurs in the plane zs0.

4. Numerical results and discussion

In Fig. 3 the normalized intensity of a 5 femtosecond
pulse transmitted through the grating is compared with the
same pulse traveling in vacuum. Over the complete de-
picted time interval, the pulse transmitted through the
grating advances the pulse propagated in vacuum. Particu-
larly, the maximum of intensity travels with a velocity

Fig. 3. Intensity versus time of a 5.0 femtosecond pulse transmit-
ted through the grating in comparison with propagation in vac-
uum. Pulse intensities are normalized to unit area; the grating-
transmitted pulse is attenuated by a factor 1.8=10y4 .

Fig. 4. Normalized intensity versus time of a 2.8 femtosecond
pulse transmitted through the grating in comparison with propaga-
tion in vacuum. The attenuation of the grating-transmitted pulse
amounts to 3.3=10y4 .

exceeding the speed of light in vacuum. Noteworthy is that
in transmission the pulse is shortened by 0.34 fs. Although
the pulse reshaping causes a decrease of the pulse duration,
the temporal intensity profile shows no visible deviation
from a Gaussian.

With decreasing pulse duration, the superluminal effect
vanishes. The maximum of a pulse of 2.80 fs traverses the
plane zsh after 1.88 fs, corresponding to a velocity of
0.89 c. Remarkably, the temporal intensity profile exhibits
a distinct deviation from the Gaussian shape of the inci-

Ž .dent pulse cf. Fig. 4 . The pulse shows an intensity tail,
suggesting that a fraction of its energy dwells inside the
grating for a time of the order of 10 fs.

With an increase in the grating thickness the intensity
behind the grating decreases exponentially, just like in an
absorbing medium due to the imaginary part of the wave
vector. The maximum of intensity shows a temporal be-
havior that is significantly different from the propagation

Ž .in vacuum Fig. 5 . For a grating thickness less than 80 nm
it reaches the rear plane with an additional delay compared

Fig. 5. Delay of the grating-transmitted wave packet versus grat-
ing thickness compared to propagation in vacuum over the same
distance. Pulse duration is 246 fs.
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Fig. 6. Pulse duration versus its delay. Grating thickness is 0.5
mm.

to the vacuum case. When the grating thickness exceeds 80
nm the tunneling time becomes independent of the grating
thickness. The velocity of the maximum of intensity asso-
ciated with the tunneling process can reach 36.7 c at a
grating thickness of 3.0 mm; however, in this case the
intensity is attenuated by a factor of 10y22. With an
increase of the grating thickness, the independence of the
transit time suggests that inside the vacuum regions of the
grating the wave vector is not just complex but purely
imaginary.

A similar phenomenon is observed in the quantum
mechanical tunneling of a particle through a potential

w xbarrier and is known as the Hartmann effect 18 .
Provided that the incident pulse is long enough, i.e., it

has a narrow spectrum, its spectrum lies in a wavelength
interval where the phase of the coefficient of diffraction is
linear in l. Therefore, the pulse delay becomes indepen-

Ž .dent of the pulse duration for a pulse )50 fs Fig. 6 . For
short pulses the superluminal tunneling velocity vanishes.

For a pulse traversing a solid layer of metal no superlu-
minal propagation has been observed. Interpreting the
grating as a stack of waveguides, the z-component of the
wave vector k in the interstices of vacuum is purelyz

imaginary, i.e., it is no longer periodic in the z-direction.
On the other hand, inside a metallic layer, k is complexz

with a non-vanishing real part which gives rise to an
exponentially decreasing wave with a periodicity in the
z-direction. This property of the field is vital to its tempo-
ral transmission behavior, because the periodicity of the
field establishes a phase relation between the field in front
of and behind the grating. The lack of a periodicity in the
grating case, i.e., the phase of the coefficient of diffraction
does not change along z, gives rise to the phenomenon
that an increase of the grating thickness does not necessar-

ily lead to an increase of the transmission time, as shown
in Fig. 5.

5. Conclusions

The above results show that the propagation of the
maximum of intensity of a wave packet with a velocity
exceeding the speed of light in vacuum is possible. In this
context the question arises, whether the principle of causal-
ity is violated, which demands that ‘‘information’’ cannot
be transmitted with superluminal velocities. The results
presented are obtained by the numerical solution of
Maxwell’s equations. Since Maxwell’s equations are inher-
ently Lorentz-invariant, there exists an explanation of the
superluminal effect conforming to causality: The numeri-
cal data give evidence that, due to the attenuation, at every
instant the intensity of the transmitted pulse does not
exceed the intensity in absence of the grating. Similar
observations have been reported for tunneling through

w xphotonic band-gap materials 1,2 .
Thus, the effect described above is to be understood as

a pulse reshaping phenomenon, where the rear part of the
incident pulse is attenuated more than the front part.
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