
A COMPACT PARALLEL MULTIPLICATION SCHEME BASED ON (7,3) AND (15,4)
SELF-TIMED THRESHOLD LOGIC COUNTERS

Peter Celinski, Troy Townsend, Said Al-Sarawi,
Derek Abbott

Centre for High Performance Integrated
Technologies & Systems (CHiPTec),

The Department of Electrical and Electronic
Engineering, Adelaide University,

SA 5005, Australia.
celinski@eleceng.adelaide.edu.au

José F. López

Research Institute for Applied
Microelectronics, Universidad

de Las Palmas de G.C.,
35017-Spain.

lopez@iuma.ulpgc.es

ABSTRACT

This paper presents a new, a highly compact implementation
of a 32�32 parallel multiplier based on parallel counters.
The new multiplier is designed using the recently proposed
Self-Timed Threshold Logic (STTL). The design is based
on a direct multiplication scheme using depth 2 (15,4) and
(7,3) STTL parallel counters and (4:2) compressors. The
proposed parallel multiplier reduces the partial product mat-
rix to two rows in only three stages, hence the effective mul-
tiplier logic depth is 6. It is shown that the presented scheme
significantly reduces the gate count of known proposals for
multiplication using threshold logic.

1. INTRODUCTION

As the demand for higher performance very large scale in-
tegration processors with increased sophistication grows, con-
tinuing research is focused on improving the performance,
area efficiency and functionality of the arithmetic and other
units contained therein. Low power dissipation has become
a major issue demanded by portable and embedded applica-
tions and also the high performance processor market in or-
der to meet the high density requirements of advanced VLSI
processors. In addition, applications such as DSP and on-
chip multipliers for processors have created the demand for
fast, area efficient multipliers. The main goal of this work
was to develop an area efficient multiplier architecture while
maintaining the high performance of known threshold logic
based designs.

Threshold logic (TL) was introduced over four decades
ago, and over the years has promised much in terms of re-
duced logic depth and gate count compared to conventional
logic-gate based design. However, lack of efficient realiza-
tions has meant that TL has, until recently, had little impact

on VLSI systems. Efficient TL gate realizations have re-
cently become available [1] [2] [3] [4], and a number of ap-
plications based on TL gates have demonstrated its ability
to achieve high operating speed and significantly reduced
area compared to conventional logic [5].

This paper presents a highly compact implementation of
a parallel multiplier based on Self-Timed Threshold Logic
counters. The organisation of the paper is as follows. Sec-
tion 2 gives a brief overview of threshold logic, followed by
a description of Self-Timed Threshold Logic in Section 3.
Section 4 describes the (7,3) and (15,4) STTL counters,
the proposed partial product matrix reduction scheme for a
32�32 multiplier and a comparison with known proposals
for multiplication using TL. Finally, the results of this work
are summarized in Section 5.

2. THRESHOLD LOGIC

A threshold logic gate is functionally similar to a hard limit-
ing neuron. The gate takesn binary inputsx�,x�,. . . ,xn and
produces a single binary outputy, as shown in Fig. 1. A lin-
ear weighted sum of the binary inputs is computed followed
by a thresholding operation.

1x

2x

xn

yTΣ
..
.

Fig. 1. Threshold Gate Model

The Boolean function computed by such a gate is called
a threshold function and it is specified by the gate threshold
T and the weightsw�,w�,. . . ,wn, wherewi is the weight



corresponding to thei th input variablex i. The outputy is
given by

y �

�
�� if

Pn

i��
wixi � T

�� otherwise�
(1)

This function can be written in a more compact form using
the sgn notation as

y � sgn

�
nX

i��

wixi � T

�
� (2)

The sgn function is defined assgn�x� � � if x � �
and sgn�x� � � if x � �. Alternatively, expressions of
the typesgn�x � T � may be conveniently (and informally)
written simply asT�, where it is understood that the ac-
tual sgn function argument isx � T . This will allow us to
easily describe feed-forward TL networks with composite
expressions such asy � sgn�x � �� � � ���.

A TL gate can be programmed to realize many distinct
Boolean functions by adjusting the gate thresholdT . For
example, ann-input TL gate withT � n will realize ann-
input AND gate, while settingT � n�� results in a majority
function. This versatility means that TL offers a signific-
antly increased computational capability over conventional
logic. Significantly reduced area and increased circuit speed
can therefore be obtained, especially in applications requir-
ing a large number of input variables.

3. SELF-TIMED THRESHOLD LOGIC (STTL)

Both static and dynamic synchronous TL gate implementa-
tions have been devised. Purely static gates such as neuron-
MOS suffer from limited fan-in [5], typically less than 12
inputs. Also, some of the existing dynamic gates have the
disadvantages of relatively high short circuit and dynamic
power dissipation, and some require multiple non-overlapping
clock phases [2] [5].

Eb

E

T

Qb

E’b

E’

E

xn

C
n

2x1x

C
2

C
1

E

M5 M3 M4 M6

M10

M2 M9

M7

M12

Q
M11

M1M8

. . .
To next stage

A

B

Φ

Fig. 2. The proposed Self-Timed Threshold Logic gate
structure

Fig. 2 shows the proposed dynamic circuit structure for
implementing a Self-Timed Threshold Logic gate. The main
element is the cross coupled NMOS transistor pair (M3,
M4) which generates the outputQ and its complementQ b

after buffering by the two inverters. The gate operates in two
phases. Precharge and evaluate are specified by the dual en-
able signalsE and its complementEb. The inputsxi are
capacitively coupled onto the floating gate� of M10, and
the threshold is set by the gate voltageT of M11. The po-
tential� is given by� �

P
n

i��
Cixi�Ctot, whereCtot is the

sum of all capacitances, including parasitics, at the floating
node. Weight values are thus realised by setting capacitors
Ci to appropriate values. Typically, these capacitors are im-
plemented between the polysilicon 1 and polysilicon 2 lay-
ers, although alternatives, such as trench capacitors used in
DRAM or MIM capacitors, are available in some processes.

The enable signals,E andEb, control the precharge and
activation of the sense circuit. WhenE is high the voltages
at nodesA andB are discharged to ground. WhenE is low
andEb is high, the outputs are disconnected from ground
and the differential circuit, formed by M10 and M11, draws
different currents from the supply via M8 and M9. The cur-
rents in M8 and M9 are mirrored by M1 and M2 respect-
ively, and the gates of M3 and M4 (nodesA andB) begin
to charge at different rates. As the charging rates are dif-
ferent and the capacitances at those two nodes are the same
(ensured by identical sizing of the two buffer inverters), a
voltage difference begins to develop between nodesA and
B. When this difference is sufficiently large, either M3 or
M4 turns on, but not both. The outputsQ andQ b are eval-
uated and passed to the next stage. In this way, the circuit
structure effectively determines if the weighted sum of the
inputs,�, is greater or less than the threshold,T , thus realiz-
ing a thresholding operation. The two buffer inverters serve
to provide a balanced capacitive load for nodesA andB and
also to drive the inputs of the next stage.

The next STTL gate is held in precharge until the pre-
vious gate evaluates its output. The enable signals for the
next stage are generated by the NAND gate outputE �

b
and

its inverseE �. During the precharge phase of the first stage,
the Enable signals for the next stage areE �

b
=0 andE �=1,

hence the second stage and all subsequent stages are also in
the precharge phase, and only begins to evaluate after the
outputs of the first stage (Q andQb) are established. Cor-
rect timing is ensured by setting the combined delay of the
two buffer inverters and the NAND gate to be larger than
the evaluation delay of the first gate. Thus, outputs of each
gate propagate through the chain in a self-timed fashion.

4. THE PROPOSED 32�32 MULTIPLIER DESIGN

Parallel counters, or simply counters, are multiple-input cir-
cuits that count the number of inputs in a given state (nor-



mally logic�). The most common application of counters is
the reduction of the partial product matrix (PPM) in paral-
lel multipliers. The bits forming the columns of the matrix
are the inputs to a succession of counters which reduce the
matrix to two rows. These two words are then added us-
ing a fast carry-propagate adder to produce the final result
of the multiplication. The majority of the delay and area of
multipliers is associated with the reduction of the PPM.

4.1. (7,3) and (15,4) Parallel Counters Using STTL

An (m,n) counter is a combinatorial network which gener-
ates a binary coded output vector of lengthn which corres-
ponds to the number of logic�’s in them-bit input vector.
In conventional logic, counters such as (7,3) or (15,4) have
traditionally been implemented by using trees of (3,2) coun-
ters (full adders) because of the disadvantages of a direct
implementation [6]. However, counters consisting of such
full adder trees have a relatively high delay and grow rap-
idly with input vector size in terms of the required number
of full adders [7].

The truth table for the (7,3) counter, and the (7,3) Min-
nick counter [8] design are shown in Fig. 3. The Minnick
implementation was chosen because it offers a good gate
count-delay tradeoff. The inputv consists of the seven in-
put bit lines, each having a weight of 1, and is denoted by a
thick black line to differentiate it from the single bit lines. In
effectv represents the arithmetic sum of�’s in the 7 inputs.
From the truth table, the MSB of the output,y�, is � when
v � 	, hencey� is the output of the first layer gate which
has a threshold of 4. They� output is� when� � v � 	 and
v � 
. Therefore the second layer gate which has threshold
2 computesy�. This gate has an input weighted -4 from
the first layer gate which has threshold 4. Similar reason-
ing can be applied to the outputy�. In the general case, the
MSB will be computed by a first layer gate, and the lesser
significance outputs are computed in the second layer. The
second layer gates have as inputs, in addition tov, the neg-
atively weighted outputs from the first layer to isolate the
desired ranges ofv where those outputs are�.

The operation of the (7,3) Minnick counter can be de-
scribed by the following expressions [9]:

y� � sgn�v � 	� � 	�

y� � sgn�v � �� 	 � 	��

y� � sgn�v � �� � � �� � � � 	� � � � 
��� (3)

The (15,4) Minnick counter can be designed by extend-
ing the previous arguments. The implementation is shown
in Fig. 4 and can similarly be described by the following
expressions:

y� � sgn�v � �� � ��

y� � sgn�v � 	� � � ���

−2

−2
−2

−4 1

2

0

7

0
0
0
0
1
1
1
1

0
1
2
3
4
5
6
7

0
0

0
0

1
1

1
1

0

0

0

0

1

1

1

1

012

4

2

6

2

1v y y y

v

y

y

y

Fig. 3. The (7,3) counter truth table and the Minnick imple-
mentation

y� � sgn�v � �� 	 � 	� � 	 � �� � 	 � ����

y� � sgn�v � �� � � �� � � � 	� � � � 
� � � � ��

� � � ��� � � � ��� � � � �	��� (4)

6

8

12

14

2 1

3y

2

4 2y

y1

10

0

15
v

y

4

−2

−2
−2
−2
−2

−2−2

−4

−4
−4

−8

Fig. 4. The (15,4) Minnick counter

The circuit diagrams showing the (7,3) and (15,4) counter
designs are shown in Fig. 5 and Fig. 6, respectively. The
numbers next to the capacitors indicate the multiple of the
unit capacitor. In both counters, the capacitive network which
calculates the sum of the counter input bits is implemented



3

1

2I

2I

2I1

1

2

1

6

4

4

4

12

2

2

2

2

2

2

8

7

1

2

1

2

8

y

y

2

1

0

2

11

1

1

6

5

4

3

2

1

y

x

x

x

x

x

x

x
I

I

I Q

Q

Q

Q

QI

I

I

I

Fig. 5. Circuit diagram of the proposed STTL Minnick (7,3)
counter

2I

2I

2I

1I Q

1

1I

I Q

Q

2I

2I

2I

1I Q

2I

1I Q

2

2

2

2

1

2

QI

I

1

2

QI

I

y1

y2

y3

y0

15x
14x
13x
12x

x11

10x
9x
8x
7x
6x
5x
4x

3x
2x
1x

28

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

1

8

1

10

1

14

1

6

1

1

2

1

1

1I

I Q

Q

2

2

2

8

1

1

2

1
1

12

2

1 QI

I

1

1

1

1

3

Fig. 6. Circuit diagram of the proposed STTL Minnick
(15,4) counter

only once, and this value becomes one input of the sense
amplifier in every STTL gate. The enable signals,E andE b

are not shown to improve clarity. The gates in the second
layer are enabled after the outputs from the first layer are
evaluated, as discussed in Section 3. The enable signals
of one of the first layer gates drive the enable inputs of all
second layer gates. The capacitors shown connected toGnd
andVdd adjust the effective threshold of each STTL gate.
The outputs of the first layer gates are connected to the ca-
pacitors that implement the negative weights. The inputs
denoted byI� andI� in the Figures correspond to the� and
T inputs, respectively, in Fig. 2.

4.2. Partial Product Matrix Reduction Scheme

The reduction of the partial product matrix for a 32�32 dir-
ect multiplication of unsigned numbers is shown in Fig. 7.
The partial product matrix in the top of the figure consists
of 32 rows, each containing 32 bits, and is generated using
an array of AND gates.

In the reduction scheme shown, Stage I employs the
STTL (15,4), (7,3) counters and full adders to reduce the
matrix to that shown in Stage II. Stage II has a maximum
column height of 10 bits and is further reduced by using
(15,4), (7,3) and (3,2) counters to obtain the matrix of height
4 shown in Stage III. Finally, two rows are obtained by us-
ing conventional (4:2) compressors [10] in Stage III. These
two rows are usually the inputs to a fast carry-propagate
adder (not shown) which calculates the final product. In
Stage III it is more area efficient to use static CMOS (4:2)
compressors than an equivalent threshold gate network. The
(4:2) compressor proposed in [10] has a critical path delay
of 3 XOR gates which is less than the delay of two STTL
threshold gates. Hence the critical path delay of the partial
product matrix reduction is less than 6 threshold gate delays.

During the reduction process, not all inputs in each counter
are used, and the unused inputs are simply connected to lo-
gic 0. It is therefore possible to reduce the number of TL
gates in some of the counters in the proposed scheme. For
example, when using a (15,4) counter to add a column of 10
bits, the quantities��� and�	� will be zero and need not
be computed. This optimization was not considered in this
evaluation.

Table 1 compares the TL gate count of this work with
other 32�32 multiplication schemes that also have a critical
path delay of six gates. For comparison, the full adder and
(4:2) compressor are conservatively estimated as occupying
the equivalent area of two and four threshold gates, respect-
ively. The breakdown in terms of the number of each type
of counter is only shown for this work. The total TL gate
count is compared with two other known proposals for mul-
tiplication [11] [12] in the final row of the table. It shows
that the scheme proposed here reduces the total number of



Stage I

Stage II

Stage III

Fig. 7. Proposed reduction scheme for 32�32 partial
product matrix

equivalent threshold gates by almost 50% compared to other
schemes.

Table 1. Comparison of 32�32 TL multiplication schemes
This work Ref. [11] Ref. [12]

Full Adders 17
(4:2) Compressors 60
(7,3) Counters 46
(15,4) Counters 85
Total TL Gate Count 1354 2678 3374

5. CONCLUSIONS

This paper presented compact designs for (15,4) and (7,3)
counters based on Self-Timed Threshold Logic, and the coun-
ters were applied to the reduction of the partial product mat-
rix in a 32�32 direct multiplication. The gate count of the
resulting parallel multiplier was compared to other known
schemes for threshold logic multiplication in depth 6 and it
was shown that the proposed design requires almost 50%
fewer gates.

Acknowledgments

The support of the Australian Research Council (ARC) and
the Sir Ross and Sir Keith Smith Fund is gratefully acknow-
ledged.

6. REFERENCES

[1] T. Shibata and T. Ohmi, “An intelligent MOS tran-
sistor featuring gate-level weighted sum and threshold
operations,” inIEDM, Technical Digest, New York,
NY, USA, December 1991, IEEE.

[2] M.J. Avedillo, J.M. Quintana, A. Rueda, and
E. Jiménez, “Low-power CMOS threshold-logic
gate,” IEE Electronics Letters, vol. 31, no. 25, pp.
2157–2159, December 1995.

[3] H. Özdemir, A. Kepkep, B. Pamir, Y. Leblebici, and
U. Çiliniroğlu, “A capacitive threshold-logic gate,”
IEEE JSSC, vol. 31, no. 8, pp. 1141–1149, August
1996.

[4] P. Celinski, J. F. L´opez, S. Al-Sarawi, and D. Abbott,
“Low power, high speed, charge recycling CMOS
threshold logic gate,”IEE Electronics Letters, vol. 37,
no. 17, pp. 1067–1069, August 2001.

[5] K. Kotani, T. Shibata, M. Imai, and T. Ohmi,
“Clocked-neuron-MOS logic circuits employing auto-
threshold-adjustment,” inISSCC Digest of Technical
Papers, 1995, pp. 320–321.

[6] P. J. Song and G. D. Micheli, “Circuit and architec-
ture tradeoffs for high-speed multiplication,”IEEE
Journal of Solid State Circuits, vol. 26, pp. 1184–
1198, September 1991.

[7] E. E. Swartzlander, “Parallel counters,”IEEE Trans-
actions on Computers, vol. C-22, pp. 1021–1024,
1973.

[8] R. C. Minnick, “Linear-Input Logic,” IRE Transac-
tions on Electronic Computers, vol. EC-10, pp. 6–16,
March 1961.

[9] Tijs Huisman, “Counters and multipliers with
threshold logic,” M.S. thesis, Delft University of Tech-
nology, May 1995.

[10] V. G. Oklobdzija, D. Villeger, and S. S. Liu, “A
method for speed optimized partial product reduction
and generation of fast parallel multipliers using an
algorithmic approach,”IEEE Transactions on Com-
puters, vol. C-45, no. 3, pp. 294–305, March 1996.

[11] S. Vassiliadis and S. Cotofana, “Counters and multi-
plication with threshold logic,” inProceedings IEEE
30th Asilomar Conference on Signals, Systems and
Computers, California, USA, November 1996.

[12] R. Lauwereins and J. Bruck, “Efficient implementa-
tion of a neural multiplier,” inProc. 2nd Intern. Con-
ference on Microelectronics for Neural Networks, Oc-
tober 1991, pp. 217–230.


