Deconvolution method for two-dimensional
spatial-response mapping of lithographic infrared antennas
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The spatial impulse response of antenna-coupled infrared detectors with dimensions comparable with the
wavelength is obtained from a two-dimensional scan of a tightly focused CO,-laser beam. The method
uses an experimental setup with submicrometer resolution and an iterative deconvolution algorithm.
The measured spatial response is compared with numerically computed near-field distributions of a
dipole antenna, with good agreement. © 1999 Optical Society of America
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1. Introduction

Novel submicrometer-sized thin-film detectors have
been demonstrated in the infrared (IR) at wave-
lengths near 10 pm. Their sensing mechanism is
based on the operation of metal-oxide-metal (MOM)
diodes’-3 or microbolometers.# The power collection
capability of these ultrasmall detectors is enhanced
by the use of integrated antennas. The measured
response is closely related to the shape of the antenna
(e.g., dipole, bow tie, or spiral) and its physical di-
mensions. These detectors are the smallest cur-
rently available in the IR region. Characterization
of their two-dimensional spatial response is therefore
a challenging task. In this paper, we demonstrate a
method to map the spatial response of these devices.

The signal obtained from a detector is proportional
to the irradiance distribution integrated over the col-
lecting area of the device. For classical macroscopic
IR sensors the photosensitive region is well defined
and is usually described as an effective area within
which a constant spatial response is assumed; the
outside region is zero. To characterize such devices,
one typically scans a probe beam across the photo-
sensitive region, measuring the output of the detector

The authors are with the School of Optics, University of Central
Florida, P.O. Box 162700, Orlando, Florida 32816-2700. J. Alda’s
(j.alda@fis.ucm.es) permanent address is School of Optics,
University Complutense of Madrid, Avenida Arcos de Jalén s/n
28037 Madrid, Spain. G. D. Boreman’s e-mail address is
boreman@creol.ucf.edu.

Received 10 March 1999; revised manuscript received 21 April
1999.

0003-6935/99/193993-08$15.00/0

© 1999 Optical Society of America

as a function of the position of the probe beam. The
measured output signal is, in general, the convolu-
tion of the sensor’s spatial response and the beam
profile. If the dimensions of the photosensitive re-
gion are large compared with the beam, the detector’s
spatial response can be approximated directly as the
measured output signal.

The subwavelength IR detectors used in our study
are smaller than the waist dimensions of laser
beams, even when low f/# focusing optics are used.
Consequently, our problem involves the mapping of a
structure smaller than the dimension of the probe
beam used for the measurement. This problem has
been addressed and solved in other areas of optics.
The restoration of images produced by aberrated sys-
tems is possible when the transfer function of the
optical system is well known. An interesting appli-
cation of this principle was developed for the Hubble
Space Telescope.® Its point-spread function (PSF)
was calculated with high accuracy, and blurred im-
ages were enhanced by use of the known PSF in a
deconvolution procedure. The algorithms developed
for this case have been adapted to retrieve the spatial
response of our small IR detectors.

Section 2 describes the theoretical foundations of
the deconvolution method and shows the application
of the iterative algorithm, along with the character-
ization method of the illuminating beam and the pa-
rameterization of the spatial response. To illustrate
the deconvolution method, we present in Section 3
the determination of the thermal and the antenna
spatial response of MOM antenna-coupled detectors.
The practical problems of characterizing the beam
before the deconvolution algorithm are discussed.
We also analyze several methods to provide dimen-

1 July 1999 / Vol. 38, No. 19 / APPLIED OPTICS 3993



sional parameters that describe the collecting area of
the detectors. The results of the method are com-
pared with the near-field distribution of a dipole an-
tenna.

2. Measurement of the Spatial Response

When an arbitrary irradiance distribution falls onto a
detector, the signal is obtained by integration of the
spatial distribution of the irradiance over the receiv-
ing area of the detector. This fact can be expressed
as

S = J. Jm I(r)D(r)dr, 1)

—o0

where I(r) is the incident irradiance distribution and
D(r) is the spatial response of the detector, with r
being the vector position on the plane of the detector.

Our method to determine the spatial response of
the detector is based on a two-dimensional scan of the
receiving area with a probe beam. The detector sig-
nal, S(x, y), is recorded as a function of the sensor’s
position with respect to the beam. It is given by the
convolution:

S(x,y) = I(x, y)*D(x, y)

- f f Ix,y)D(x —x'y —y)dx'dy’. (2)

—0

The detector’s spatial response function, D(x, y), can
be obtained if both I(x, ¥) and S(x, y) are known.

The detectors that we want to characterize are
smaller than the beam. The beam has a typical min-
imum waist area of approximately w(1.22)\)%
whereas the effective collecting area of the detector is
known to be only a fraction of \?, as stated by
Fumeaux et al.6 The success of our deconvolution
method depends on an accurate knowledge of the
beam and on achievement of a high signal-to-noise
ratio in the detector response.

A. Beam Measurement and Characterization

To produce an accurate deconvolution, we need a
good characterization of the probe beam at the plane
of the measurement (in the case of image restoration
this corresponds to a faithful characterization of the
PSF). The plane is chosen to be that of the beam
waist where the irradiance reaches its maximum
value. Although, ideally, one considers a diffraction-
limited beam, the uncertainties in alignment may in-
troduce some residual aberration. Therefore we
expect a beam with a characteristic waist area of ap-
proximately 10 \%. Pixelated IR imaging systems do
not have sufficient spatial resolution to provide a fine
enough sampling of such a tightly focused laser beam.
Consequently, we used a scanning method to charac-
terize the beam.” A knife edge is moved across the
beam along two orthogonal axes for several axial po-
sitions.?® The light that is not blocked by the knife
edge is detected by a large-area thermal IR detector.
The data are an integral of the beam and are used to
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develop a model of the beam profile. If the intensity
distribution of the beam is I(x, y, z), the knife-edge
signals are given by

K(x,z) = fx le I(x',y, z)dx'dy, (3)

—oo ¥V —o

K(y, 2) = f f I(x,y', 2)dxdy’. @)

—oo ¥V —x

We found the position of the beam waist by ana-
lyzing the Z-axis evolution of the measured functions
K(x, z) and K(y, z). These functions reach a maxi-
mum steepness at the beam-waist plane,z =z, Al-
though in the one-dimensional case it is possible to
retrieve the beam profile from a single knife-edge
measurement, this is not the case for a general non-
symmetric beam. Thus a two-dimensional model of
the beam is developed from the knife-edge data sets,
K(x, z,) and K(y, z,), and a simulated knife-edge
response is calculated. The beam parameters are
optimized to yield a best fit of the experimental data.
The selection of the function representing the best fit
to the probe beam depends on the particular charac-
teristics of the laser source, the focusing setup, and
the information extracted from the measured data,
e.g., the orientation and relative amount of coma and
the presence of diffraction rings. A Gaussian beam
is a reasonable starting point for a beam profile, if the
focusing optics are sized to avoid hard-aperture
effects. The beam model is then refined by the
addition of aberrations and diffractive terms as
necessary.10-12

B. Deconvolution Method

When the spherical-aberration problem of the Hubble
Space Telescope was discovered, a considerable effort
was made to develop a method for enhancing the
quality of the images. The PSF of the system was
modeled and used for deconvolving the images.
Some of the algorithms used in that case can be ap-
plied to our problem. A particularly succesful
method is the Richardson—Lucy algorithm,3-15 an
iterative process that converges to the maximum-
likelihood solution of the function before blurring.
For our case it can be written as follows:

D"Nx,y) = D*(x, y)

TSN ey~ ndedy
| sy Y~y y

J‘“ J I(x', y)dx'dy’

—o ¥V —x

where S represents the measured data, I is the input
irradiance distribution, and D”* is the spatial re-
sponse of the detector obtained at the kth step of the
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Fig. 1. Evolution of the MSE between the actual measured data
and the image obtained for every step. The MSE decreases
sharply during the first steps of the algorithm and then becomes
stable.

algorithm. A calculated version of the signal S* is
obtained with the convolution:

S*(x, y) = D*(x, y)*I(x, y). (6)

We describe the accuracy of the deconvolution by
means of the mean-squared error (MSE) between our
experimental data and S*(x, y). As seen in Fig. 1,
the MSE stabilizes after a fast decrease during the
first steps of the algorithm. If the algorithm is left
running without limitation in the number of steps, it
will try to reproduce the noise of the measured image
by a fragmentation of the object. This fact can be
monitored because the MSE shows a sharp increase
when a fragmentation appears. Then, we chose to
stop the algorithm after initial stablization of the
MSE. The typical number of iterations used is near
300.

An important difference between our measure-
ments and the typical image enhancement case is
that our image is obtained after a long scanning pro-
cedure that takes approximately 90 min. Therefore
it is not practical to average several images to obtain
a lower noise level. This noise places a lower limit
on the MSE achievable.

C. Characteristic Parameters of the Spatial Response

Although the two-dimensional spatial response gives
insight into the detailed behavior of the antenna, it is
more convenient in practice to provide a simpler char-
acterization in terms of the size of the receiving area.
This area can be used as a figure of merit for com-
parison with other devices.

A first approach to model this area is to assume an
elliptical shape,® then the characterization is given by
the axes of the ellipse and its orientation. The ratio
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Fig. 2. Schematic experimental setup used for measuring the
spatial response of the detectors.

of the axes describes the aspect ratio of the spatial
response. This allows us to determine the element-
to-element spacing along two orthogonal directions in
an IR focal-plane array. The ellipse characteriza-
tion can be done with the same procedures applied to
laser beams,6 in terms of the moments of the spatial
response function.

It is also possible to define the receiving area as a
flat-top function for which the shape of the base is
given by a ratio between the enclosed volume within
the area and the total volume under the spatial re-
sponse. The area can be computed with the contour
that encircles the main part of the volume (for exam-
ple, 90%). Use of this area facilitates a convenient
estimation of the power collected by the detector for a
certain level of irradiance. This collected power is
relevant for description of detector performance, ei-
ther in terms of responsivity or noise-equivalent
power. This collection area also indicates the max-
imum allowable spacing of detector elements that can
be used to achieve an efficient power collection.

From a spatial-resolution viewpoint, an optimum
arrangement of detectors can be achieved if the spa-
tial responses of two adjacent detectors intersect at
the 50% point. Therefore the area that encircles the
half of the volume of the spatial response indicates
the maximum density of detectors for an optimization
of the resolution of a focal-plane array.

3. Spatial Characterization of Metal-Oxide-Metal
Infrared Antennas

The devices that we characterized with this method
are MOM junctions coupled to a dipole antenna
whose full length is approximately 6.7 pm.2 They
show a marked polarization dependence, a fast re-
sponse, and other features that make them a prom-
ising device for IR imaging.® To obtain a thorough
characterization of the device, it is necessary to mea-
sure the spatial response for two polarizations, one
with the electric field parallel to the antenna axis and
the other with the electric field perpendicular. The
current waves induced in the arms make the parallel
response larger than the perpendicular one. The
parallel response can be modeled as the sum of two
contributions: one arising from a polarization-
independent thermal effect in the substrate and the
other arising from the antenna response.23 We
characterized three antenna-coupled MOM sensors
that were fabricated on the same chip and that
showed a similar responsivity and polarization de-
pendence.
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Fig. 3. Comparison of the simulated knife edge obtained with the
modeled beam (solid curve) and the experimental data for the
beam-waist position (dotted curve). The knife edge is along the x
direction.

A. Experimental Setup

The experimental setup is presented in Fig. 2. The
beam is delivered by a CO, laser emitting in the
10P(20) line at A = 10.59 pm with a TEM,,, mode. A
set of neutral-density filters is used to attenuate the
beam and to reduce the optical power in the focused
spot to 256 mW. The polarization of the beam is fixed
by means of a pile of plates oriented at the Brewster’s
angle. To rotate the plane of polarization, we used a
half-wave plate after the polarizer. The laser beam
was focused onto the device by means of a set of three
lenses. The first lens focused the beam onto a plane
where a mechanical chopper was placed. A second
lens collimated this radiation and filled the aperture
of the third lens, an aspheric designed to be free of
spherical aberration for an object at infinity. This
aspheric operates at f/1. The antenna is illumi-
nated through the substrate to avoid interference ef-
fects® and to produce a better coupling of the
radiation to the antenna—detector structure.!?

The device was mounted on a three-axis micropo-
sitioner stage. The movement along the beam-
propagation direction, Z, was controlled manually.
The X and the Y motions were motorized with a
Melles—Griot Nanomover system and were controlled
by a computer that also controlled the data aquisi-
tion. The sensor was connected to a current biasing
source and a preamplifier whose signal was directed
to a lock-in amplifier synchronized with the mechan-
ical chopper. The beam waist was located by move-
ment of the detector along the three axes and by a
maximizing of the response. Once the device was
located at the beam waist, the Z position (along the
axis of propagation of the beam) was fixed, and a
two-dimensional serial scan was performed, moving
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Fig. 4. (a) Measured image obtained from the experimental
setup. (b) Beam used for deconvolving the data. (c) Spatial re-

sponse obtained after 300 iterations of the deconvolution algo-
rithm.

the device in the X and Y directions. Our measure-
ments were made along a square of 100 pm, with
steps of 1 um and a repeatability of 0.1 pm. The
10,000 data points were acquired in 1.5 h with our
experimental setup. Each detector was scanned
four times. The response for the perpendicular and
the parallel polarizations were measured for two or-
thogonal orientations of the detector with respect to
the beam. Rotating the devices 90° in the XY plane
for each polarization yielded additional insight on the
beam structure and provided additional data for the
deconvolution procedures. For each polarization, a
total of six spatial responses were obtained from the
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aged these responses after adjusting their mutual
orientations.

B. Beam Characterization

When the laser beam is focused by the aspheric lens,
the incoming collimated beam is larger than the di-
ameter of the lens, producing a focusing spot having
a primarily Airy-function character. In addition, re-
sidual alignment errors in the setup produced a small
amount of coma, less than \/20, in the focused beam.
The comatic aberration was seen in a well-defined
angular direction. Thus the beam is modeled as a
convolution of the Gaussian beam delivered by the
laser and the comatic Airy function.’® The analyti-
cal expression of this model is given by the formula:

E(x,y) = exp(— xw;;v )*(ZJ;(U) s b ZJ;(U)
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where J, are the J-Bessel functions of order %, ¢ is
the orientation of the comatic spot, « is the amount of
coma in wavelength units, and
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where a is the radius of the circular aperture and z is
the distance from the aperture to the plane of focus.
The knife-edge measurements® were compared
with the results of the analytical model. An optimi-
zation procedure was then performed to find the
beam parameters. In Fig. 3 we show how the results
of a simulated knife-edge scan (solid curve) of the

25 50 75 100 125 modeled beam compared with the experimental re-
sults (dotted curve). The best fit the experimental
knife-edge data produced an input beam with the
following parameters: o, = 5.5 pm, a = 0.033, ¢ =
325° a = 23.1 mm, and z = 50 mm. These param-
eters are consistent with their expected values, when
the laser characteristics, the actual dimensions of the
lenses and their focal lengths, and the alignment pre-
cision are considered. The modeled beam that we
used in the deconvolution is represented in Fig. 4(b).
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Fig. 5. Average spatial response obtained after deconvolution of
the experimental data. The direction of the electric field is (a)
parallel and (b) perpendicular to the dipole antenna. The an-
tenna response is obtained by substraction of both responses and is
represented in (c). The scale on the top shows the relative value
of the maximum for each of the spatial responses: parallel (Par =
2. 5 50 75 100 125 1.00), perpendicular (Perp = 0.73), and the antenna (Ant = 0.34).

The spatial dimensions are given in micrometers.
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C. Deconvolution

The Richardson—Lucy algorithm was applied to the
experimental data with the modeled beam obtained
from the knife-edge measurements. The thermal re-
sponse was assumed to be represented by the decon-
volution of the image obtained for the perpendicular
direction of polarization.® The spatial responses for
both polarizations were subtracted to obtain the an-
tenna’s spatial response.

Figure 4 shows the measured data, the beam used
in the deconvolution, and the sensor’s spatial re-
sponse obtained after 300 iterations. When the sen-
sor’s response and the beam are convolved again, the
results are visually undistinguishable from the mea-
sured signal. Although we are mainly interested in
the measurement of the antenna and the thermal
responses, it is possible to observe the response of the
coplanar strips that make the low-frequency connec-
tion to the bond pads. Approximately the same
magnitude (~3% of the maximum of the parallel spa-
tial response) is seen for both the parallel and the
perpendicular polarizations, showing the mainly
thermal character of the bond-pad response.

D. Thermal and Antenna Responses and Their Spatial
Characterization

In Fig. 5 we present the average of the spatial re-
sponses of the devices. There are several reasons
why an averaging procedure is desirable. First, the
modeled beam was obtained by our fitting an integral
representation instead of a point-to-point map of the
beam. The location and size of the beam waist were
found by our averaging and fitting the knife-edge
measurements. Second, the experimental data con-
tains a level of noise that limits the number of iter-
ations allowed in the algorithm. After analyzing the
histogram of the scans, we evaluated the level of
noise to be approximately 2% of the maximum value
for the perpendicular polarization case, which corre-
sponds to an approximate value of 1% the copolarized
signal. Finally, there are the experimental uncer-
tainties due to the positioning of the device along the
Z axis and the residual long-term variation of power
of the laser source.

The spatial response to the parallel polarization
[Fig. 5(a)] can be distinguished from the perpendicu-
lar one [Fig. 5(b)], not only because of its higher am-
plitude (see scale at the top of Fig. 5 showing the
maximum of the perpendicular and the antenna re-
sponses normalized to the maximum of the parallel)
but also because of its shape that is aligned along the
direction of the dipole. Once the deconvolution has
been made for each set of data, the antenna response
is obtained by substraction of the spatial responses of
the parallel- and the perpendicular-polarization di-
rections. The average of these results is shown in
Fig. 5(c).

From a practical point of view it is more convenient
to characterize the receiving area by a few parame-
ters instead of by a map of its variation. These pa-
rameters have been discussed in Subsection 2.C.
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Table 1. Characteristic Parameters of the Spatial Response of the
Antenna®

Characteristic Parameters of the Antenna Response

Parallel semiaxis of the ellipse (um) 6.2*05
Perpendicular semiaxis of the ellipse (pm) 3.1x1.0
Area encircling 90% volume (m?) 58.6 = 18.9
Area encircling 50% volume (j.m?) 17.7 + 3.8

“The values are the average of the parameters obtained from the
individual spatial responses of the six measurements plus/minus
their standard deviation.

The computed area parameters for the antenna re-
sponse are presented in Table 1. The values are the
average and the standard deviation of the parame-
ters obtained for the six individual spatial responses.
The contours of the areas that encircle 50% and 90%
of the volume of the antenna spatial response are
represented in Fig. 6, superimposed with the geom-
etry of the antenna-coupled detector. The correla-
tion between the geometry of the antenna and its
deconvolved spatial response is significant. In Sub-
section 3.E this correlation is corroborated by the
results from two numerical simulations of the dipole
antenna.

Previously, the spatial response was modeled as a
rectangular function having an elliptical base.6 The
measurements made along the two principal direc-
tions allowed the dimensions of the ellipse to be de-
termined. Here the values of the semiaxes of the
ellipse are obtained from the deconvolution by means
of the calculation of the moments of the spatial re-
sponse. The results are in good agreement with the
conclusions of Fumeaux et al.® who estimated that
the effective area of the antenna response extended
approximately one dielectric wavelength (Ag; = 3.1
wm) past the physical dimensions of the antenna on
each side in the two principal directions. For our

12.5
10.0 90%
7.5
pm
5.0 A

2.5

00 25 50 75
um

10.0 12.5

Fig. 6. Geometric structure of the antenna-coupled detector is
represented along with the contours of the areas containing 50%
and 90% of the volume of the spatial response. The lobes corre-
sponding to the arms of the antenna are clearly distinguished.
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Fig. 7. Dipole antenna modeled in vacuum and having the same
relation between length and wavelength as in our case. (a) Cal-
culated near-field distribution. The location of the maximum is
the same as in the experimental results. (b) Result of convolving
the simulated near-field pattern with a constant function with

6.7-um-length antenna this estimation would result
in a horizontal and a vertical semiaxis of 6.4 and 3.1
pm, respectively. These values can be succesfully
compared with those referred to in Table 1.

In addition to this ellipse characterization, the
other parameters of Table 1 can be used according to
the desired application. For example, the area en-
circling 90% of the volume can be used for the esti-
mation of the collected power in the calculation of the
responsivity of the detector. Despite the tight focus-
ing, only 3.3 of the total 25-mW beam power was
enclosed by this collecting area. This yields a re-
sponsivity of approximately 0.1 V/W for the detectors
used in this study.

E. Simulation of the Antenna Near-Field Distribution

The results discussed the last section were compared
with two simulations of the antenna response. The
calculation was performed with a full-wave, method-
of-moments!® electromagnetic simulation package
(IE3D from Zeland Software Inc.).

In the first simulation, we evaluated a simple
model of a dipole immersed in vacuum with the wave-
length taken to be the effective wavelength in the Si
substrate, A\g; = 3.1 pm. To scale the real dipole, a
2.2-\g;-long, 1/15-\g;-wide dipole is fed at the center
with a sinusoidal wave. The electric current distri-
bution obtained is used to compute the near-field pat-
tern. This distribution is computed on a (20-pum)?
box that encloses the dipole. The box is cut with 21
planes in both X and Y directions to match the sam-
pling resolution of our experiment. The electric field
is calculated at the cross sections of the intersecting
planes. In Fig. 7(a) the result of the simulation is
represented in the same scale as that used in Fig.
5(c). By comparing these two figures, we conclude
that the deconvolution algorithm can retrieve the lo-
cation of the two maximum lobes of the dipole an-
tenna. However, the simulated spatial response is
less extended and has a more compact distribution.
Our simulations show that a finite conductivity of the
lossy substrate material tends to broaden the spatial
response. The complete explanation of this effect is
out of the scope of this paper and will be considered in
the future. Keeping the simplified model for the di-
pole and taking into account the empirical rule
pointed out in a previous paper,® we have convolved
the simulated response with a circular blur having a
diameter of one \g;. The result of the broadening is
seen in Fig. 7(b) and can be compared with the an-
tenna spatial response [Fig. 5(c)]. The broadened
calculated near-field pattern and the deconvolved
spatial response are similar both in shape and in
dimension. Both Figs. 5(c) and 7(b) show a charac-

diameter one \g;. After this step the distribution can be succes-
fully compared with the experimental results. (c) Result of a
simulated 6.7-pm-long, 0.3-pm-wide dipole onto a 1.5-pm-thick
layer of SiO,, € = 4.94, on a semi-infinite substrate of Si, e = 11.7.
The scales are the same as those used in Fig. 5.
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teristic two-lobe pattern that can be related to the
fact that the total length of the dipole antenna is
approximately twice the substrate wavelength \g;.
This fact is only visible in the mapping of the spatial
response, and it is not obvious from the characteristic
parameters shown in Table 1.

A second simulation has been done with a more
realistic model. A 6.7-pm-long, 0.3-pm-wide, dipole
is located onto a SiO, layer having a thickness of 1.5
pm and a dielectric constant of e = 4.94. Under the
Si0O,, layer is a semi-infinite Si substrate having a
dielectric constant of € = 11.7 (the real thickness of
the the silicon substrate is 385 pm). The wave-
length of the incident radiation was taken to be A =
10.6 wm. The results of this refined model are pre-
sented in Fig. 7(c) and can be compared with the
experimental results of Fig. 5(c).

From these two simulations, we can conclude that
a simple model calculation of the antenna structure,
along with an empirical one-wavelength blurring of
the result, provides a first-order approach to the pat-
tern of the antenna spatial response. A refined sim-
ulation with actual values of material characteristics
allows us to obtain a closer approximation to the
antenna response. Both approaches can be useful in
the evaluation of the design of a given structure.

4. Conclusions

A method for measuring and characterizing the spa-
tial response of a sensor that is nearly a point receiver
is presented. Itis applied to the measurement of the
response of antenna-coupled thin-film MOM diodes
for 10.6-pm infrared radiation. This method allows
us to obtain a map of the spatial response of an indi-
vidual device. This map reveals details that are not
available by other measurements. For example, it is
possible to characterize the spatial response of the
coplanar strip lines connecting the detector to the
external circuit. Besides, some details regarding
the presence of lobes in the near-field antenna pat-
tern are clearly visible. The results can be summa-
rized by parameters describing the aspect ratio, the
collection area, or the 50% point of the spatial re-
sponse, according to the application. Results with
this method confirm the previous results for the char-
acterization of MOM detectors. As a practical rule
of thumb the collection area of an infrared antenna
extends approximately one dielectric wavelength
past the physical dimensions of the antenna. The
dipole antenna has been simulated and the near-field
pattern has been calculated. When this dipole is
modeled in vacuum and the obtained results are
broadened with a one-wavelength blur function, the
simulation and the experimental data agree well both
in shape and size. If the antenna is modeled more
accurately to the actual case (dipole on a finite-
thickness SiO, layer and a Si substrate), the results
also coincide with the spatial response evaluated
from the experimental data by means of the decon-
volution method.
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