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Abstract. The methods of finite-difference time-domain wheres,, 8, §;, é; are the respective half grid constants and
(FDTD) and finite-volume time-domain (FVTD) are well sayE,(+34,) is shortforE, (x +6x, y, z, t). This means that
known techniques for solving electromagnetic problems.the approximation of this particular component of Maxwell's
While for FDTD a number of commercial codes is avail- equations at the locatio¢r, t) needs only field values be-
able there are only few based on FVTD. However, FVTD hasing half space- or time-steps apart from this location. Yee’s
advantages since it allows completely unstructured meshescheme uses different locations for different field compo-
This paper 1. deals with the principle errors made in both aphents. Fig. 1la shows the spatial location of both the com-
proaches and 2. gives a theoretical comparison of the (localponents and the equations. Note that the material equations
stability of an FVTD scheme as opposed to the conventional B = wH andD = ¢E) are easily satisfied for each compo-
Yee-scheme commonly used in FDTD. Finally the principles nent separately at its own location. The Yee-scheme consists
of a new FVTD program is presented. Its capabilities areof set Ay: six Maxwellian component Egs. (1) plus set B
demonstrated by the field of an antenna array. six material equations. SetyAis of second-order accuracy,
set By is exactly satisfied.

In the finite integration technique (FIT) (Weiland, 1977)
Maxwell’s first equation in integral form—(% [[4B-dA =
faAE - ds) is applied to the green rectangle shown in

In any numerical technique for solving Maxwell’'s equations Fig. 1(b).
the vector-valued-, ¢ (space,timefunctionsE(r,t) (elec- 0 _ 45, —5,
tric field strength) H (r, 1) (magnetic field strength}p(r, 1) _§<BZ>A'25X'25)1 = (Ey) 28y — (Ey) "-28y—

(displacement density) anB(r, r) (magnetic flux density) ENT 08 _ (g7 08 >
are mapped to a finite set oumbersto be processed by <( L x = (Bl )‘) (2)

the computer. In the well-known Yee-scheme (Yee, 1966;Thereby(.)f means a line mean value along the respective

Taflove and Hagness, 2000) field components are taken afige of the rectangle anda means the surface mean value.
particular locations on a cubic grid such that the componenty ¢, integrating the whole Eq. (2) along the time interval
values can be seen as “exact” values at the respective 10cgzgy, ;, — 8; tot + &; and then dividing it by 8,5,8; we ob-

. . . . y

tions and the equations applied to these values can be ingin fime mean values (denoted by overbars) at the right-hand

terpreted as second-order finite-difference approximations of;qe and surface mean values evaluated at the boundary of the
Maxwell's equations. E.g., the-component of Maxwell's 4 interval at the left-hand side:

first equation is—2B.(r, 1) = LE,r.1) — ZE.(r,0).
This can be approximated to sexcond—order ayccuracy at the. (Ba)a(+00) — (Bo)a(=d0) =

1 From field functions to numbers

location(r, 1) by 28 » 5
T\ +0x T\ —6x 5l y T\ %
- 2, ~ 25, 25,
Ey(+8:) — Ey(=8:)  Ex(+8y) — Ex(=4y) 1) Thoggh formally ide_ntical to_the approximative relation (1)
25, 25, this is anexactequation. As in Yee's scheme the whole set
of Maxwell’'s eqations can be derived. However, the material
Correspondence td?. Leuchtmann equations are now approximatively satisfied since, e.g., the

(leuchtmann@ifh.ee.ethz.ch) line-time-mean valug H,), is related to the surface mean
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Fig. 1. The well-known Yee-schem@) places different field components at different locations. Weslf®e magnetic components and for
electric components. The respective values are used to form second-order accurate difference equations. The Fl{bypsesmatean
values B- and D-components: surface mean valugs;and H-components: line-mean values). In FVTE) volume-mean valuedX- and
D-vectors) and face-mean valuds-(and H-vectors) are used.

over time an exact vector-valued equation somehow similar
to Eq. (3) is found:

(B)v(+8) = (Blv(=6) _ 1~ —
- % =y X Filmx Br). O

Using Maxwell's second equation another exact vector equa-
tion involving (D)y and(H)f, values is obtained.

Concerning time the face mean values are “older” than the
newest volume mean value at the left hand side. “Newer”
face mean values might be obtained by the extrapolation

Fig. 2. The picture shows 988 wave vector directions (from the <£>F(t +28) ~ Z(QF(I +é0) - <E_>F(t)’
sphere’s center). The numerical schemes are tested using plandd)r(r + 26t) ~ 2(H)g(t + &) — (H)r(1). (6)
waves propagating in the respective directions.
Since each face has two sides one can set up further relations,
e.g.
value(B,)a which is a value at a fixed time. The FIT-scheme E
consists of set A six Maxwellian component equations plus (H)f ~ %(B)v. + %(B)vr
set B=: six material equations. SetfAs exactly satisfied  (E)g ~ D), + (D)
while set B is approximate. —
In the finite-volume time-domain (FVTD) approach oreven (HIF=[ ((B)v,, (Blv, (D)v, (D)v,) (7)
Maxwell's equations can also be integrated over a volume { (< r
V rather than a surface A as done in the FIT-derivation in
the previous section. We assume a polyhedron V witkur-
faces I forming the boundaryV of V (see Fig. 1¢) and find,

e.g.,

where the indices r and | stand for “left” and “right” (of the
face F) respectively. The quantities | are some weights
due to geometry. In a simple symmetrical case (two identical
cells) itiswy = w = % In the more complicated casg,
9 N andg are some functions yet to be specified. Regardless of
~3 ///B dv = — # ExdA = Z”i X //E dA, (4) the particular choices both Egs. (6) and (7) are approximate
v v i=1 F relations.
m W FVTD ends up with an exact set/20of six scalar Eq. (5)
IR and a second set\B— formed with Egs. (6) and (7) — of
where(E)r, and (B)y are the time-dependent mean values approximate relations.
of the vector function€ (or B) on the polyhedronith face As it is well known both sets of equations are combined to
F; (or the volume respectively) and is the respective outer an update scheme which allows it to compute “new” values
normal unit vector. Hence Eqg. (4) is an exact relation be-(written inn-dimensional vectofV Jnew) from the “old” val-
tween time dependent mean values. If Eq. (4) is integratedies[V]oqg. The respective scheme can be formally written
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Fig. 3. The histograms of the FIT-errors according to Eq. (10)?%3;: 14...15 (cells per wave length). Maximum values are around 1%.
From left to rightng 1x, nFiTy andngitz are shown.
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Fig. 4. Histograms of the FVTD-errors according to Eq. (11) %g = 14...15 (cells per wave length). Maximum values are around 4%

which is four times more than in FIT. This higher value is not a principle drawback of FVTD but mainly due to our simple choice in Egs. (6)
and (7): essentially a first order scheme both in space and time. From left tagightx, nFvTDy @andngyTpZ are shown.

with a large matrixM ,,.;n0,a Where “method” is one out of ferent value foll V]hewis obtained by using Eq. (8). A com-

FDTD, FIT and FVTD: parison off VInewex @nd[V Inew delivers the respective error.
In order to keep the amount of computation within reason-
[VInew = Mumethod - [V lola- (8) able limits we restrict the error analysis to the approximative
Two questions can be posed: equations and use typical discretisation lenghéractions
Accuracy: “To what degree are the approximate equationsOf the wavelength. = % :
wrong in each case?” In FIT the material equations are approximate relations,
Stability: “Under what conditions are the respective €.9., (Dg)a ~ &(Eg)L. From this we derive the error
schemes numerically stable?” rex = e(Ef)L/(De)a = 1. Introducing the expressions

Since FDTD and FIT differ only in the interpretation of the given in Eq. (9) and evaluating the mean values by analytical
numbers but lead to formally the same equations we treatntegration we find a value different from 1 for the respective
only the FIT. exact ratio:

Si(ky85)- Si(ic,8,)

2 The definition of the errors and their values FEx = — :
Si(k;8;)- Si(wé;)

= nFITx = |[7ex — 1/-100% (10)

The accuracy depends on several things such as structure and . sinx .
dimension of the mesh but also on the actual field. We definé"’Ith Si(x) := ==. The histograms of these error values
988 test cases of the actual field: plane waves propagating ievaluated fos, =3, = 4§, = \/%& and all wave directions
different directions. A single plane wave in a homogeneousshown in Fig. 2 are given in Figs. 3 and 4.
medium is described by In order to obtain a reasonable basis of comparison we
use a regular cubic grid (withs2-25,-25.-cubes) also in the
FVTD case and make the aforementioned simple choices in
D(r,t)/e = E(r,t) = Eo-coSwt —k - 1) Egs. (6) and (7). Moreover we can setf = wy = 3. Intro-
B(r,t)/uw=H(r,t) = Ho-cOSwt —k - 1) ducing the expressions from Eq. (9) and performing the inte-
grations according to the definitions in the FVTD-formulae
we finally obtain for the update equation related to a face
oriented ing-direction

Si(2ke 8¢ ) — Si(2ws;)
Si(wd;)

. 1
with Ho= —k x Eg,k - Eq=0, k -k = o’pne.  (9)
wp

The directions ofc := (i, «y, k;) and Eq are free beside
these restrictions.

Given one of these test field% o1 is computed for both
methods in the respective way (space and/or time mean val
ues) and also the respective exBéinewex- A slightly dif-

NFVTDE = 2 -100% (12)

I'i'he respective histograms of these errors are given in Fig. 4.
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3 The stability but rectangular matris;,.q;. This matrix can be reduced
to a quadratic matrix by applying a spatial Fourier transfor-
The time iterative scheme is a repeated application of Eq. (8)mation to the “old” values. In this case any “old” value can
This means that the matri ;104 Should not have any pe written asjold’o.ej(Kxx+Ky}~’+Kzz) whereuvoqo is the value
eigenvaluer with [A] > 1. For a full problem the di- in the cell's center(x, 7, 7) denotes the displacement and
mension 0fM ern0a is very large and the respective search y = (., «,, «.) is the vector of the spatial Fourier frequen-
for all eigenvalues would be extremely expensive. How-cies. In particular values required from outside the cell are
ever, there are special numerical schemes (e.g., the Arnoldilated to the respective values inside the cell by a simple

scheme) which find the largest eigenvalue within still rea- multiplication with the respective dislocation factor.
sonable time. In this work we do not follow that way but

reduce the number of variables (and with it the dimension
of M,.ern0q) by defining alocal stability by focusing on a
single cell. Considering the update scheme for a particula
value (e.g., by solving Eq. 3 or 5 for the late@stvalue) we
find that for computing all “new” values of a single cell the ~ Note thatin the rectangular grid neighbour values are sim-
number of the required “old” values is always larger than Ply multiplied by e/%¢% which remains true even for line-,
the number of “new” values. This simply reflects the fact surface- and volume mean values. Assuming a homogeneous
that “old” values from the neighbour cells are also involved. material in and around the cell in FIT/FDTD the {66)-

The respective ‘local’ update equation would have a smallmatrixM can be written as

The restriction of the stability analysis to a single Fourier
term is sufficient if stability is proofed faany Fourier term.
r'I'his can be deduced from Parseval's theorem: the sum of all
Fourier terms (which is the true field) remains stable.

a1 1
[[;i| =|:U~|-li8|\/|E|V|H MMEi||:IE1:| (12)
new EMH U old
M
with
0 g_i(erKZSZ -1 _g_;(erKyBy -1
oo Mp = | —§ (25 — 1) 0 st — 1)
1 8 ,2jky8,y 8t (,2jKx8 ’
_t(elyy_l) _B_I(e]xx_l) 0
U=|010], % : . . 13
001 0 | _g_i(l _ e—2]l(151) g_i(l _ 6—2]/('),8},) ( )
My =| 21— e 2kb) 0 — (L — e 2ikadx)
_g_;(l _ e—ZjKy(Sy) g_i(l _ e—ZjKX(SX) 0

The eigenvalues’ amount M does not exceed 1 if and only if

82 1 1 82

- < < = —. (14)
= 2 - 2 . 2 = 2 2 2

e (smg;/cx) 4 <SIn§;Ky) i (smaész) ( ) I <%> n (%) 5x=5f=az=,s 3

This is the well-known Courant limit.

In FVTD there are 24 scalar variables per cell: 3 face mean vadlyess and H1 » 3 plus volume mean values & andD.
The scheme can be written as

2|

[Ey E; E3 Hi H, Hs; B D)., =M-[E1 E, Es Hy H, Hz B D]}, (15)
with the 24x 24-matrix
— l+ X l+ X 1+ X l+ X T
-U 0 0 ) LA, 1;‘ A, ) A, 0 lT“tU
0 ~U 0 o, oA, A, 0 22y
0 0 _U l+gozZ A, 1J;”‘z Ay lJ;otZ AZ 0 lJ;()tZU

1+a, 1ta,
“Lepa Ly 0 0 ey g

M = y " (16)
Itay Itay Itay Itay
L A, L Ay n A, 0 -U n U 0
o o o oz
A, —HEa, JHma 0 0 U Zx=U 0
—A, —A, —A, 0 0 0 U 0
L 0 0 0 A A, A; 0 U
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where0 stands for a 3-by-3 zero-matrix, := e/, oy 1= /%%, @, := ¢/*:% and

5 0 0 O 0 01 0 -1 0
A§=Siﬂr—UaQK§, sz[o 0 —1}, Kyz[ 0 0 o], Kzz[l 0 o}. (17)
£ 01 O -1 0 O 0O 0 O
Evaluating the eigenvalues bf yields
2
82 82 . 1—cos8, 1—cosx,8, 1—cosx.s
L+l 4+ [1—yL+ |[1-y—L) =1 with y= 4+ 2 + —— (18)
e ue 8¢ Sy 82

We find that f0ry8t2/(;w) < 2 all eigenvalues are unimodular complex numbers whileﬁﬁr/(us) > 2, there are eigenvalues
with an absolute value being larger than one. A stability-criterion is therefore

1 1 1  pe
S+o+—><— 19
g+g+¥—$ (19)

This is exactly the same as Eq. (14) in FIT/FDTD!

4 The FVTD program ing the following approach: For each face of the cell only
the field components tangential to the face are considered

A FVTD program is developed in parallel to this theoretical (Plane-wave ansatz) and the fields are split into incoming
study. To take advantage of the geometrical flexibility of the 21d outgoing contributions. Second-order accuracy in space
method, the FVTD algorithm is applied in an unstructured 'S @chieved using the MUSCL approach (monotonic upwind
tetrahedral mesh. This type of mesh permits a conformafcheme for conservation laws (Bonnet et al., 1999)) that in-

meshing of complicated geometries including, e.g. curved ofterpolates volume values (assumed located in the barycenter
oblique surfaces. of the cell) to face centers using estimated gradients.

The basic FVTD Eq. (4) is numerically integrated in each When using second-order accurate schemes in space, the
cell of the mesh in a time-stepping iteration. The approx-first-order time-stepping scheme of the left side of Eq. (5)
imate relations of the type Eq. (7) are implemented us-is advantageously replaced by the second-order predictor-

Fig. 5. A four element linear array of Hertzian dipoles (white dots on the horizontal axis). The near-zone E-field (magnitude distribution) is
shown. It has been computed with the FVTD method. The array is steered towaodf Bdoadside (= vertical direction). The respective
far-field pattern is superimposed in white.
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corrector Lax-Wendroff scheme (Bonnet et al., 1999). Thisgrees of freedom. The simple scheme treated here leads to
scheme permits as alternative to Eq. (6) to obtain “newer’unacceptably high errors. However, it is expected that a more
face mean values in the numerical estimation of Eq. (5). Thesophisticated scheme delivers much lower errors.
resulting implemented algorithm is consequently second-
order accurate both in space and time. Absorbing boundary
conditions of the Silver-Mller type or Engquist-Majda type
are applied to the outer boundary of the computational do-
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