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Abstract—This paper illustrates the application of the Finite-
Volume Time-Domain (FVTD) method to the electromagnetic 
modeling of complex 3D antenna structures. The FVTD 
algorithm solves Maxwell's equations in a conformal polyhedral 
mesh, therefore permitting an accurate approximation of curved 
surfaces and a fine resolution of structural details. The flexibility 
of the unstructured mesh is coupled with a geometry-matched 
local time-stepping scheme to increase the computational 
efficiency. The FVTD algorithm is applied here to simulate 
probe-fed hemispherical dielectric resonator antennas. Emphasis 
of the investigation is placed on the modeling of fabrication 
details and their influence on the input impedance and resonance 
frequency of the device. 

Index Terms—3D FVTD method, conformal meshing, 
dielectric resonator antenna 

I. INTRODUCTION 

The Finite-Volume Time-Domain (FVTD) method has been 
introduced at the end of the 1980's [1], [2] as a powerful 
technique for numerically solving Maxwell's equations in 
unstructured meshes. Typically, the FVTD algorithm is 
applied in a tetrahedral mesh, therefore avoiding stair-casing 
approximations for the discretization of curved or non-
orthogonal surfaces. The FVTD method stands therefore as an 
alternative to the Finite-Difference Time-Domain (FDTD) 
method for complex geometries where conformal meshing is 
advantageous. 

Another important characteristic of unstructured meshes is 
their ability to adapt the cell size to the local geometrical 
requirements. Since the transition between domains with 
different feature sizes can be made very fast, the number of 
cells in the computational domain can be minimized without 
sacrificing the resolution. Modeling small structural details, 
e.g. the feed of an antenna, in close proximity to large 
structures is a frequently encountered practical problem. A 
solution to this problem strongly benefits from different scales 
of cell sizes: In the coarse regions of the problem, the standard 
linear cell dimension will be determined by a fraction of the 
shortest wavelength of interest (typically λ ), whereas 
resolution of details might require much smaller cell 
dimensions (e.g. in the order of  or smaller). Another 
advantage of inhomogeneous meshes consists in the modeling 
of boundaries between materials with a large dielectric 
contrast. The shorter wavelength in the denser material 

requires finer cell sizes than in free-space, which can be 
achieved straightforwardly in an unstructured tetrahedral 
mesh. Since the FVTD method keeps the number of needed 
cells to a minimum in complex problems, it saves memory 
despite a computationally higher expense for a single cell 
(geometrical data are required) compared to FDTD. 
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Simulations of dielectric resonator antennas (DRA) are very 
challenging problems that can take advantage of the 
geometrical flexibility of the FVTD method: A DRA typically 
includes curved boundary surfaces with a large dielectric 
contrast, and small feeding mechanisms. In this investigation, 
a hemispherical DRA fed by a coaxial probe is modeled. The 
effects of different probe configurations and of fabrication 
imperfections are studied numerically. The results 
demonstrate the versatility of the FVTD technique. 

II. THE FVTD ALGORITHM 
The FVTD method is based on Maxwell's equations written 

in conservative form and integrated over elementary volumes 
[3]. The implementation in a digital computer requires the 
approximation of the equations in each elementary volume of 
a given spatial grid. In a tetrahedral mesh, each volume V  has 
4 faces with areas  and outward-pointing unit normal 
vector 

i

kF
kn . This yields the following vector equations 
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The left-hand side (LHS) of (1) represents a volume 
integral, where the triangular brackets denote the averaging of 
the field components over the considered volume. This 
average is approximated by the value of the fields in the 
barycenter of the tetrahedron. The right-hand side (RHS) of 
(2) represents a sum of surface integrals over the faces of the 
considered finite volume. The integrands are so-called 
(mathematically defined) "fluxes" through the faces of the 
cells. The triangular brackets represent the averaging of the 
fields over each face of the tetrahedron. The approximation 
locates the average field components in the barycenter of the 
considered face. 

The interaction between adjacent cells in the FVTD 
algorithm happens, as inspired by FV techniques in fluid 
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dynamics, through separation of the flux terms in incoming (-) 
and outgoing (+) contributions (split-flux formulation [3]) 
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Explicit update equations for the fields in the finite volumes 
are obtained by discretizing the time variable in (2). Different 
time-marching schemes can be applied for this purpose. In a 
first-order approximation, the  is estimated using a 
finite difference. In the algorithm implemented for this study, 
the second-order Lax-Wendroff predictor-corrector scheme 
[3] is used. A significant increase of the efficiency of the 
FVTD march-in-time iteration is obtained through the 
application of geometry-matched local time steps [4]. 

/ t∂ ∂

A. Local Time Steps 
The local time step technique is based on a special partition 

of the computational domain into sub-domains. This partition 
is performed automatically during preprocessing based on 
local geometric and material conditions of the elements in the 
mesh. To obtain a robust and precise local time step scheme, 
three restrictions are set on the sub-domain partition: 

1) The partition defines only discrete levels of local time 
steps that correspond to power of two times  
(∆ ∆ ), where  is the fundamental 
time step that assures stability in the whole mesh. 

t∆
,  2 ,  4 ,  8 ,...t t t t∆ ∆ t∆

2) The time steps of two adjacent sub-domains must have a 
ratio of two. Thus, multiple scale problems produce nested 
sub-domains. 

3) The local time step for all elements in each sub-domain 
satisfies the stability condition. 

A division of the computational domain satisfying these 
three conditions is performed using an iterative process 
described in [4]. The restrictions imposed on the partition 
allow a treatment of the borders between sub-domains as 
generic two-level boundaries, which are inserted very 
naturally in the FVTD march-in-time iteration. The time 
consistency is preserved by introducing an artificial half-step 
in the larger cells of a time-step boundary. The principle is 
demonstrated in Fig. 1 for first-order march in time. A 
boundary between the first and the second level of time step is 
depicted, but the procedure is similar for all other time step 
levels. The values of the fields in the higher level boundary 
cell are required at time step n+1 to perform the second small 
time step ( 3 , from n+1 to n+2) in the lower level cell. Since 
the fields at this time step are not computed explicitly in the 
large cells, these values are obtained through averaging the 
fields computed at time steps n and n+2 (operation denoted by 

2 ).  It is therefore necessary to perform the update of the 
larger cell ( 1a  from n to n+2) before the second update in the 
smaller cell ( 3 , from n+1 to n+2). The technique is described 
here for a first-order time discretization but can be extended to 
more sophisticated schemes as shown in [4].  

The less frequent update of larger cells in the mesh allows a 
significant speedup of the computations when different 
element scales are present in the simulated structures. 
Although the update of a cell at the boundary between sub-
domains requires around two times more CPU time than a 
standard cell at the same time-step level, this does not slow 
down the computation significantly since boundary cells 
represent only a few percent of the total number of cells. 

The local time step scheme used in this study has proven to 
be very accurate and robust since it requires no space 
interpolation and only simple time interpolations. Therefore, 
the fundamental time step does not require a more severe 
stability condition than the original algorithm. This has been 
confirmed in all examples computed in practice, involving up 
to 8 nested levels of time steps (from ∆  to ). t 256 t∆
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Fig. 1. Principle of application for local time steps at the boundary 
between sub-domains (two-level system). The chronology is indicated by the 
encircled numbers. An artificial half-step 2  is created in the large cell to 
obtain data required to perform the update 3 . 

B. Near-Field to Far-Field Transformation 
The far-field patterns are computed using a Huygens' 

surface enclosing the antenna. This triangulated closed surface 
is embedded in the tetrahedral mesh. A discrete Fourier 
transformation (DFT) is performed on the fly during the 
FVTD iteration to obtain the necessary frequency-domain 
tangential fields in the center of each triangle of the Huygens' 
surface. The sampling frequency of the DFT is determined by 
the local time step of the sub-domain where the sampled fields 
are located. 

C. Ports 
Port planes are introduced as triangulated surfaces in the 

FVTD mesh. The planes force the tetrahedrons to be aligned 
with respect to one face and therefore form a phase reference 
plane for the incident and the reflected waves. 

The flux-splitting formulation in (2) is exploited to compute 
the incident and the reflected fields in a port plane consisting 
of N  triangles. This allows to directly calculate power waves 
without the need to determine voltages and currents in the port 
by [5] 
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where the subscript t  denotes tangential fields and the 
superscripts  and −  indicate incident and reflected fields. 
In a multimode environment the total field in a waveguide can 
be expressed as a sum over all possible modes. Due to the 
orthogonality of the modes, the mode amplitude of each mode 
can be determined. Thus the amplitude A  of the th 
mode at time step n  can be computed with 

+

/ ( )m n+ − m

  (4) //

1
( ) ( , ) ( )

N

m t
k

A n k n k F+ −+ −

=
= ⋅∑E e

Fig.

if the normalized mode template vector e  is known a priori. 
The power waves can then be computed as 
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with Z  being the wave impedance. w

III. THE HEMISPHERICAL DIELECTRIC RESONATOR ANTENNA 
Dielectric resonators placed in an open environment can be 

used as radiating elements showing such attractive 
characteristics as small size, large bandwidth, high efficiency 
and simplicity of excitation [6]. Numerous shapes of 
resonators have been used including rectangles, cylinders, 
rings and hemispheres. The coupling of power to the dielectric 
structure can be achieved through coaxial probes, apertures, 
microstrip, or coplanar lines. Most of the designs exhibit a 
large dielectric contrast to free-space and at the same time 
small feed dimensions. The FVTD method seems therefore 
perfectly suited to investigate this class of antennas. 

To illustrate the advantages of the FVTD simulations, a 
hemispherical probe-fed dielectric resonator antenna with 
characteristics close to the devices presented in [7] and [8] is 
chosen. The geometry is depicted in Fig. 2 showing all the 
relevant dimensions. The feed configuration excites the TE111 
mode of the DRA with a resonant frequency in the vicinity of 
3.6 GHz. The results of the FVTD simulations have been 
compared previously [9] with those of a finite-element based 
commercial program, showing a good agreement for return 
loss and radiation patterns. The ground plane is chosen as a  
circular plate with a radius of 60 mm. The present paper 
investigates the influence of small details on the 
characteristics of the device. The resolution of fine features in 
the simulation yields useful information on the effects of 
fabrication tolerances that might cause discrepancies from 
predictions of simplified idealized models. In the following, 
the effect of the probe shape and length, as well as the 
influence of air gaps around the probe or between the ground 
plane and the dielectric will be investigated numerically using 
the FVTD method.  
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 2. Schematic cross section of the probe fed hemispherical DRA. 

A. General Characteristics of the FVTD Model 
The broadband simulation is performed in the frequency 

range from 3 GHz to 6 GHz. The computational domain is 
closed by a sphere with radius of 80 mm where a Silver-
Müller absorbing boundary condition is applied. 

The fineness of the mesh is adapted to the different parts of 
the devices as shown in Table I and Fig. 3. The resulting ratio 
of volumes V  in the mesh reaches typically more 
than 100'000. For an efficient simulation, this spatial 
inhomogeneity of the mesh is coupled to an inhomogeneous 
time discretization with up to seven levels of local times steps 
( ). A cut through a meshed model is depicted in Fig. 3 
showing typical linear cell dimensions associated to different 
regions of the considered DRA problem. The mesh around the 
probe is determined by the geometrical resolution desired and 
might be even finer when an air gap needs to be resolved. The 
transitions between the different regions of the mesh are 
smooth in nature in the tetrahedral mesh.  

max min/V

64 t

 

∼λ0 / 10 ∼λε /10 ∼λ0 / 180
Free-space DR Probe
∼λ0 / 10 ∼λε /10 ∼λ0 / 180

Free-space DR Probe

 
Fig. 3. Cut through the 3D model of the DRA showing the mesh with 
different fineness adapted to the local geometry. The maximal ratio of 
volumes in the associated tetrahedral mesh reaches more than 100,000. The 
presence of thin air gaps in other models results in even larger size contrasts. 
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TABLE I  
TYPICAL LINEAR DIMENSIONS OF THE TRIANGLES USED FOR THE SURFACE DISCRETIZATIONS. THE FINENESS OF THE VOLUME MESH IS DETERMINED BY THE 

SURFACE DISCRETIZATION. THE NUMBERS IN TERMS OF WAVELENGTHS ARE GIVEN RELATIVE TO THE SHORTEST WAVELENGTH OF INTEREST (I.E., AT 6 GHZ). 

Linear dimensions 
 

absolute in terms of λ  0 in terms of λ  

Outer boundary 6 mm 0 / 8.3λ  0 / 8.3λ  

DRA surface 1.6 mm 0 / 31.5λ  /10ελ  

Probe feed 0.28 mm 0 /180λ  /117coaxλ  

Thinnest air gap (0.05 mm) 0.05 mm 0 /1000λ  0 /1000λ  

 

B. Detailed Model of the Coaxial Probe 
The simulations of the hemispherical DRA have been 

performed for a set of different probe lengths l  between 
1.0 mm and 9.5 mm. The variation of the probe length is a 
practical way of controlling the input impedance of the DRA. 
In addition to varying the length, detailed configurations of 
the probe have been investigated in the frame of this study. 
Different generic cases are represented in Fig. 4. The probe of 
the first case (Fig. 4 (a)) is a cut wire with an abrupt end, 
whereas the probe of the second case (Fig. 4 (b)) has a 
rounded tip. In the third case, an air gap exists between the 
probe (rounded tip) and the dielectric material (Fig. 4 (c)). 
Different thicknesses of air gaps between 0.05 and 0.30 mm 
have been modeled. All configurations have been considered 
from the perspective of the matching to 50

p

 Ω  and from the 
point of view of the resonant frequency of the DRA. The 
return loss is a practical value for a specific matching 
condition but does not yield full information on the exact 
location of the resonant frequency. 

The presence of a thin air gap around the probe requires a 
finer mesh around the probe than corresponding simulations 
without air gap. Typical ratios of volumes V  are 
given in Table II for different thicknesses of air gap.  

max min/V

C. Effect of Local-Time Stepping 
The local time stepping permits to achieve a significant 

speedup of the simulation since the large cells in the mesh will  
 

TABLE II  
MESH CHARACTERISTICS FOR DIFFERENT MODELS WITH AIR GAP AROUND THE 

PROBE. THE THICKNESS OF THE AIR GAP IS GIVEN IN MILLIMETER. 

Model # of cells max min/V V  Top level 

Air Gap 0.05 379,657 3,675,074 7 (64 ) t∆
Air Gap 0.10 237,213 803,117 7 (64 ) t∆
Air Gap 0.20 212,859 117,411 5 (16 ) t∆
Air Gap 0.30 213,379 * 95,011 5 (16 ) t∆

No air gap 209,443 112,652 5 (16 ) t∆
* The number of elements for air gap 0.20 and 0.30 is very similar since 

the discretization used on the probe (0.28 mm, Table I) is sufficient to resolve 
both gap dimensions. 

(a) (b) (c)
lp lp lp

(a) (b) (c)
lplp lplp lplp

 
Fig. 4. Different models of the probe: (a) probe with cut end, (b) probe 
with a rounded tip, (c) probe with a rounded tip and an air gap. 

be updated much less often than the small ones. For the type 
of problems presented here, computation speedup factors of 4 
to 10 are achieved using this technique compared to the 
corresponding simulations performed without local time 
stepping. The largest speedups are achieved for the most 
inhomogeneous meshes. 

The influence of the local time stepping on the simulation 
result has been demonstrated to be negligible [4]. In the 
practical examples presented here, the same conclusions can 
be applied. As illustration, the field amplitude in one 
particular point is represented in Fig. 5 together with the 
difference of the computed values obtained with and without 
local time stepping. Even when five to seven nested local 
time-step sub-domains are used, the discrepancies are well 
below -50 dB. 
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Fig. 5. Influence of the local time stepping on the amplitude of the 
electric field at a point located outside the DRA. The arbitrarily chosen point 
is updated with a local time step corresponding to 16 times the fundamental 
time step. The upper curve (E) shows the E-field magnitude in this point and 
the lower curve (∆E) the difference between the simulations performed with 
and without local time stepping. 
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IV. DETAILED SIMULATION OF THE DRA 
In this section, several features of the probe-fed DRA are 

investigated. After a general analysis of the effect of the probe 
length, the emphasis is placed on the modeling of details that 
might arise from fabrication imperfections [10]. 

A. Probe Length Dependence 
The variation of the probe length represents a very 

convenient way to control the input impedance of the probe-
fed DRA [7]. The return loss of the DRA fed by a 50 Ω 
coaxial line is represented for probe length l  between 5 and 
9 mm in Fig. 6. The optimum matching of the antenna for the 
first resonance located around 3.6 GHz (TE

p

111 mode) is 
obtained for a probe length between 7 mm and 8 mm. Higher-
order resonances with different optimum probe lengths are 
observed around 5.3 GHz and 5.7 GHz (Fig. 7). 

These results have been obtained using probes with cut 
ends (Fig. 4 (a)). The following paragraphs investigate the 
influence of probe details on the matching condition. 
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Fig. 6. Return loss (related to 50 Ω  coaxial cable feeding) as a function of 
the frequency for different probe lengths. The probes used in the models have 
a cut end. 
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Fig. 7. Return loss as a function of the probe length at three different 
frequencies. 

B. Effect of Rounded Probe Tip 
Rounding the tip of the probe makes it appear electrically 

slightly shorter than a cut-end probe with the same length. 
This has an influence on the matching of the device and is best 

observed on the return loss curves. On the upper graph of 
Fig. 8, the return loss for a rounded probe with length 6.5 mm 
remains for all frequencies in between curves for cut-end 
probes with length 6.0 mm and 6.5 mm. This suggests an 
"effective length" for the rounded probe between 6.0 mm and 
6.5 mm. This particular example has been chosen for 
illustration since it also shows a higher resonance close to 
5.3 GHz. Similar observations are made for all probe lengths. 

The lower graph of Fig. 8 considers lengths closer to an 
optimal matching for 50 Ω  and permits to quantify how 
shorter a rounded tip appears: The return loss of a rounded 
probe with 8 mm is nearly identical to the one of a cut-end 
probe with length 7.7 mm. This reduction corresponds roughly 
to half the radius of the rounding. Similar conclusions can be 
drawn for all probe lengths. 
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Fig. 8. Return loss for the probe-fed hemispherical resonator for different 
probe lengths illustrating the reduction of effective length caused by rounding 
the tip of the probe. Upper graph: The curve for rounded probe with 6.5 mm 
length is located in between the probes with lengths 6.0 mm and 6.5 mm. 
Lower graph: Nearly identical curves are obtained when considering a 
rounded tip 0.3 mm longer (here close to optimal length of the probe). 

C. Effect of Air Gap around the Probe 
The presence of an air gap around the probe has a more 

pronounced effect on the matching condition of the device 
than the rounding of the tip, since it basically alters the 
boundary condition over the whole surface of the probe. This 
has been investigated experimentally in [11] showing a 
significant effect of air gaps around the probe which fed a 
cylindrical dielectric resonator. Such an air gap might exist 
because of the mechanical tolerances associated with drilling a 
hole in the dielectric material to insert the probe. 
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In the present numerical study, we have used the FVTD 
method to model air gaps around the probe of the 
hemispherical DRA. Different thicknesses of air gap between 
0.05 mm and 0.3 mm have been modeled and compared to the 
ideal case of a perfect mechanical contact between the probe 
and the dielectric (no air gap). 

The input impedance of the probe-fed hemispherical DRA 
(rounded probe with length 8.0 mm) is plotted in Fig. 9 close 
to the first resonance frequency for different values of the air 
gap. The presence of the air gap shifts the peak of the input 
resistance towards higher frequencies and lowers its maximum 
value. Very thin air gaps can lower significantly the 
magnitude of the peak input resistance. The largest air gap 
modeled here (0.3 mm) roughly reduces the maximum input 
resistance to half (from 59 Ω to 25 Ω) and moves its location 
from 3.56 GHz to 3.67 GHz. A similar behavior is observed 
for the higher-order resonances. 

Results from a simulation neglecting such air gaps would 
not yield accurate design parameters. This can be explicitly 
observed in Fig. 10 where the return loss is represented 
around the first resonance for several thicknesses of the air 
gap. A qualitatively similar behavior has been observed 
experimentally in [11] for a cylindrical DRA.  

From the point of view of the computational cost, the 
resolution of very thin air gaps (e.g. here 0.05 mm) around the  
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Fig. 9. Effect of an air gap surrounding the probe on the input impedance 
Zin of the DRA. The rounded probe has a length of 8.0 mm. The Rin (upper 
graph) and Xin (lower graph) indicate the real and imaginary part of the input 
impedance respectively. 

probe typically increases the number of cells in the mesh 
(Table II) and therefore the overall computational effort. 
Introducing local time-steps dampens this negative effect 
since the necessary reduction of time steps associated with the 
small cells affects only a limited region around the feed. 
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Fig. 10. Return loss of the hemispherical DRA with different thicknesses 
of air gap around the probe. The figure illustrates the degradation of the 
matching condition that can occur because of fabrication tolerances. 

D. Effect of Air Gap between DRA and Ground Plane 
Another fabrication issue likely to affect the radiation 

characteristics of a DRA has been described in [12]: A thin 
gap between the dielectric material and the ground plane can 
affect severely the input impedance of the device. This can be 
explained by a change in boundary condition at the bottom of 
the DRA.  

The effect of the air gap between the hemispherical DRA 
and the ground plane on the input impedance is shown in 
Fig. 11 for different thicknesses of air gap (0.15 mm, 0.30 mm 
and 0.45 mm). The results are compared to the corresponding 
device without air gap. It is obvious that the presence of the 
air gap shifts the resonance frequency and the peak of the 
input resonance upwards in a significant manner. This can be 
interpreted as a lowering of the effective dielectric constant of 
the DRA due to the presence of the air gap. 

The shift in resonance frequency shown in Fig. 11 is 
associated to a decrease of the Q factor of the structure and to 
an increase of the matching bandwidth of the device. As 
illustration of this fact, the return loss of the four DRAs is 
shown in Fig. 12. The relative bandwidth is doubled through 
the presence of the 0.3 mm air gap between the dielectric 
resonator and the ground plane. The exploitation of this effect 
has been suggested in [10] as a practical means to increase 
bandwidth. The downside of the technique is a required 
increase in size of the device for a fixed frequency of 
operation. 

From the point of view of the computational effort, it 
should be mentioned again that resolving very thin gaps 
increases the overall number of cells in the computational 
domain. The type of air gap considered here has a more 
pronounced effect on the computational load since larger 
regions of the computational domain are affected than in the 
case of the air gap around the probe. 
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Fig. 11. Effect of an air gap between DRA and ground plane on the input 
impedance Zin of the DRA. The rounded probe has a length of 8.0 mm. The 
Rin (upper graph) and Xin (lower graph) indicate the real and imaginary part of 
the input impedance respectively. 
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Fig. 12. Return loss of the hemispherical DRA with different air gaps 
between the dielectric and the ground plane.  The figure illustrates the shift of 
the resonance frequency and the increase of the relative bandwidth when the 
air gap becomes thicker. 

E. Effect of the Feeding on the Radiation Pattern 
The radiation pattern is mainly determined by the geometry 

of the dielectric material and by the arrangement of the ground 
plane. However, by changing the location of the probe inside 
the DRA, different modes might be excited in the dielectric, 
leading to different radiation patterns. In the simulations 
presented here, the location of the probe has been kept 

constant at a distance of 6.5 mm from the center of the 
hemisphere. This arrangement is chosen for excitation of the 
TE111 mode inside the dielectric. 

For all the simulations where only the probe has been 
modified (as in paragraphs A, B, and C), no relevant 
variations of the patterns have been observed for any probe 
length or shape. This confirms that the variations of the probe 
represent a practical way of matching the antenna to the feed 
circuit without changing the radiation characteristics. 

On the contrary, small differences can be observed if the 
relative arrangement of the ground plane and the DRA is 
modified. This is the case for example when the air gap is 
introduced between dielectric and ground plane 
(Paragraph D). 

In Fig. 13, the computed patterns of the DRA are shown at 
a frequency of 3.6 GHz (near first resonance) in two principal 
planes. The curves are represented for three different 
configurations. The first two models chosen (curves 1 & 2) 
have different feeds (1 mm cut probe, and 8 mm rounded 
probe with air gap) and their patterns cannot be distinguished, 
even though the input impedances of the devices are very 
different. The third curve shown in the figure represents a 
DRA that has an additional air gap (0.45 mm thick) between 
the dielectric and the ground plane. This affects the patterns of 
the device, although not dramatically. 
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Fig. 13. Radiation patterns of the DRA at 3.6 GHz in two principal planes: 
(a) plane containing the probe (E-plane), (b) orthogonal plane (H-plane). The 
patterns are represented for three configurations: (1) 1 mm cut probe, (2) 
8 mm rounded probe with 0.3 mm air gap around the probe, (3) 8 mm rounded 
probe plus air gap between the ground plane and the dielectric. 
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F. Effect of the Finite Ground Plane 
A more visible effect can be observed when the dimensions 

of the ground plane of the DRA are changed. Different sizes 
of ground planes on the bottom of the dielectric have been 
modeled. Results for planar circular ground planes with radii 
equal to 60 mm and 180 mm have been compared to those 
with infinite ground plane. Modeling the latter, a perfectly 
conducting symmetry plane has been used in conjunction with 
image theory during the near to far field transformation 
necessary to obtain the radiation patterns.  
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Fig. 14. Radiation patterns near the first resonance (3.6 GHz) for the 
hemispherical DRA with rounded probe (length 8 mm). The different curves 
correspond to the given radii r of the circular ground plane. (a) E-plane co-
polarized pattern Eθ , (b) H-plane co-polarized pattern Eφ , (c) H-plane cross-
polarized pattern Eθ . The cross-polarized component in the E-plane is too 
small to be represented in this scale. 

From the point of view of matching the DRA to the feed 
circuit, the use of different ground planes does not have a 
noticeable effect. On the other hand, we observe that the 
radiation patterns are clearly influenced by the extent of the 
ground plane. The angular patterns in two principal planes are 
shown in Fig. 14 and Fig. 15 for the cross- and co-polarized 
components (third Ludwig definition [13]) of the radiated 
fields at the first two resonances. The cross-polarized 
component in the E-plane (plane containing the probe) is not 
shown since it is negligibly small. 
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Fig. 15. Radiation patterns near the second resonance (5.3 GHz) for the 
hemispherical DRA with rounded probe (length 8 mm). The different curves 
correspond to the given radii r of the circular ground plane. (a) E-plane co-
polarized pattern Eθ , (b) H-plane co-polarized pattern Eφ , (c) H-plane cross-
polarized pattern Eθ . The cross-polarized component in the E-plane is too 
small to be represented in this scale. 
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Comparing the radiation patterns at the two frequencies 
(Fig. 14 vs. Fig. 15), it can be observed that the first resonance 
radiates towards broadside whereas the second radiates with 
end-fire characteristics. 

The chosen sizes of the ground planes correspond to 
diameters larger than the free-space wavelength at the first 
resonance (1.45λ  and 2.17λ  respectively at 3.6 GHz). We 
observe small oscillations of the curves (local maxima and 
minima) as a function of the angle for the finite ground planes. 
These oscillations are caused by resonances of the ground 
plane, which is confirmed by the fact that the device with 
three times larger ground plane have three times faster angular 
oscillations (see e.g. the back lobes). It is also observed as 
expected that the back radiation is reduced when the ground 
plane is extended.  

0 0

These simulations show qualitatively the errors that arise 
when using infinite ground-plane computations to model 
devices with relatively small ground planes. 

V. CONCLUSIONS 
The FVTD method has been applied to the simulation of a 

probe-fed hemispherical DRA. Emphasis of the investigation 
has been placed on the effect of manufacturing issues, such as 
influence of feeding details on the matching and on the 
resonance frequency. The probe length provides as expected a 
convenient way to match the device to the circuit with a 
negligible influence on the radiation pattern. The shape of the 
probe tip has been demonstrated to have a sensible effect on 
the input impedance of the device: A rounded probe appears 
shorter than a cut probe. A more pronounced effect is 
introduced by an air gap between the probe and the dielectric 
material: The input impedance is significantly lowered and the 
resonance is shifted toward larger frequencies. 

The simulations presented here demonstrate the versatility 
of the FVTD algorithm. Modeling other complex shapes (e.g. 
[14],[15]) does not change or increase the complexity level of 
the algorithm. The intrinsic geometrical flexibility of the 
method permits, when coupled to a local time-stepping 
scheme, the resolution of small details with excellent 
accuracy. This makes the FVTD method a very powerful tool 
that can be applied to assess the effect of fabrication 
tolerances of complex devices. 
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