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SUMMARY

This paper demonstrates the suitability of the finite-volume time-domain (FVTD) method to analyse
electromagnetic ‘real-world’ problems. As a challenging example, a 1–18 GHz broadband double-ridged
horn antenna is chosen. The horn antenna consists of non-orthogonal and curved parts and a small coaxial
feeding that is modelled in detail. The simulation results of the far-field patterns, the return loss and the
gain are successfully compared to measurements. They show that the FVTD method}using an
inhomogeneous tetrahedral mesh}is very well suited for simulating complex structures. Copyright# 2004
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The finite-volume time-domain (FVTD) technique solves partial differential equations of
hyperbolic nature in conservative form. It was applied very successfully in computational fluid
dynamics and since the end of the 1980s it is used for the numerical solution of Maxwell’s
equations [1, 2]. Since the FVTD method is performed in unstructured conformal meshes it is
very well suited for modelling structures including curved or oblique surfaces and fine structural
details in close proximity to large assemblies. These problems represent a big challenge in
computational electromagnetics. Exploiting the geometrical flexibility of inhomogeneous
meshes the FVTD method constitutes a powerful alternative to the classical FDTD Yee
scheme that uses stair-casing approximations and sub-gridding to model complex structures.
Modifications of the original Yee algorithm for irregular meshes exist at the cost of an increased
complexity.The FVTD method}in spite of the larger cost per cell}saves memory resources in
comparison to the classical FDTD algorithm by reducing significantly the number of cells
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necessary for accurate simulation of complex problems. The simulation of the broadband
double-ridged horn antenna is a demanding task for numerical simulations due to the large
dimensions with respect to the wavelength at the highest operational frequency, curved and non-
orthogonal surfaces and a very small feed structure. The large bandwidth puts hard
requirements on the mesh: keeping the amount of cells as low as possible while assuring
spatial convergence over the total frequency range. Up to now only Bruns et al. [3] performed a
complete broadband numerical analysis of that antenna including the coaxial feed, using the
method of moments.

In this paper the principle steps for the FVTD method are presented first. Then the
broadband double-ridged horn characteristics are described. Using the measurements presented
in Reference [3], the ability of the FVTD method to accurately and efficiently handle such
complex structures is demonstrated here.

2. THE FVTD SCHEME

In the FVTD method, the Maxwell’s curl equations in conservative form [4] are integrated over
an elementary polyhedral volume Vi using the divergence theorem
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In these equations, @Vi represents the boundary of the elementary volume Vi that is composed of
Ni planar faces. Each face has the area Fk ðk ¼ 1; . . . ;NiÞ and a normal unit vector nk that is
pointing outwards of the corresponding cell. In the notation of the face area Fk and of the
normal vector nk the index i of the corresponding volume is omitted for the sake of simplicity.
To compute the exact equations (1) numerically, they are discretized as follows: The volume
integrals on the left-hand side (LHS) are approximated by volume mean values of B and D in
the considered volume Vi: On the right-hand side (RHS), the surface integrals are determined
using the surface mean values of E and H over each face of the elementary cell. The discretized
equations are then written as
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where h�i denotes a time-dependent spatial mean value. At this point the coupled equations (2)
are still exact. The terms nk � hEiFk and nk � hHiFk on the RHS are interpreted as ‘fluxes’
through the cell faces. There are various implementations of the FVTD scheme, that differ in the
numerical approximations of the coupled equations (2). In the FVTD algorithm presented here,
tetrahedrons ðNi ¼ 4Þ with a typical side length of l=10 are used as elementary cells in a cell-
centred FVTD scheme, where both the electric and the magnetic field components are defined at

Copyright # 2004 John Wiley & Sons, Ltd. Int. J. Numer. Model. 2004; 17:285–298

D. BAUMANN ET AL.286



the same location in the mesh (tetrahedral barycentre). Assuming that the electric permittivity e
and the magnetic permeability m are linear, homogeneous, non-dispersive and isotropic in Vi; D
and B can be related proportionally to E and H

hDiVi ¼ ehEiVi and hBiVi ¼ mhHiVi ð3Þ

Inserting the material equations (3) into the discretized Maxwell’s curl equations (2) permits to
write approximate coupled equations for the time dependent hEi and hHi with their mean
volume values located in the barycentre of the cells and their mean surface values located in the
barycentre of the cell faces.

The ‘fluxes’ through the cell faces are computed from the field values in the face’s adjacent
cells and are closely related to the tangential fields on the faces. The commonly used FVTD
schemes separate incoming and outgoing ‘fluxes’ through the surfaces. The separated ‘fluxes’
can be interpreted as contributions from plane waves propagating in positive þnk (outgoing
‘fluxes’) and negative �nk (incoming ‘fluxes’) direction through the cell face k taking into
account the transmission coefficients [4].

For each face of a considered cell:

* outgoing ‘fluxes’ are estimated from barycentre values in the considered cell.
* incoming ‘fluxes’ are estimated from barycentre values in the neighbour cell.

In the algorithm presented here, second-order accuracy in space is achieved by using
estimated gradients in the cell barycentres to compute the fields at the face centres according to
the monotonic upwind scheme for conservation laws (MUSCL) [4].

The explicit FVTD update equations (including the ‘flux’ separation) can be written as
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where the overline denotes a time mean value obtained by an integration over one time step Dt:
On the RHS of (4) the ‘fluxes’ are separated into the outgoing (indicated with superscript +)
and incoming part (superscript �). Second-order accuracy in time is attained applying the Lax�
Wendroff predictor�corrector scheme [4]. Equation (4) then represents the time-corrector step,
where the time-average values on the RHS were computed at the predictor step at a time half-
step ðnþ 1=2Þ:

Independently of the time-marching scheme used, an FVTD time step can be separated
basically into two stages as illustrated in Figure 1:

(a) The field components on the faces of the cell are computed using field values at the
barycentre of the considered cell and its direct neighbours.

(b) The barycentre values are updated using ‘fluxes’ through the cell faces according to
Equation (2) and following the chosen time-marching scheme.

In the following some relevant aspects of our FVTD implementation are described.
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2.1. Discretization

The commercial software Altair1 HyperMesh1 is used for drawing the model as well as
generating the triangulated surfaces and the tetrahedral volume mesh [5]. HyperMesh uses the
‘Advancing Front’ algorithm to generate triangular surface meshes. In FVTD, a typical cell side
length is lmin=10; where lmin corresponds to the wavelength at the highest occurring frequency in
the simulation. Small geometrical features may demand significantly smaller discretizations. A
characteristic and a main advantage of tetrahedral meshes are that two neighbouring cells
always have one face in common. Hence, the transition from small to large cells or vice versa is
always continuous and no spatial interpolation has to be performed. The non-uniformity of the
mesh is crucial for the maximal time step Dt that assures stability. The cells with the worst
volume to surface ratio determine the applicable time step according to

Dt4
1

c
min

i

ViPmi
k¼1 Fk

� �
ð5Þ

where c is the wave velocity in the medium. For an optimal time step and for good mesh quality
non-uniform cells like flat and needle-like tetrahedrons should be avoided. The presence of non-
uniform cells also results in a deterioration of the integral approximation in (2).

The only data that the commercial mesher has to transfer to our FVTD algorithm are the
positions of the vertices of the surface triangles and the volume tetrahedrons. In our
preprocessing the provided mesh data are transformed into interrelated cell, face and node lists
that characterize mesh connectivity. Also, the material properties and the special cells and
surfaces (as sources or boundaries) are stored and bookmarked.

2.2. Radiation boundary condition (RBC)

To limit the computational area a Silver-M .uuller RBC is implemented. This condition is perfectly
suited for the FVTD algorithm since the incoming ‘fluxes’ into the computational area are
simply set to zero

nk � hEi�Fk ¼ 0

nk � hHi�Fk ¼ 0
ð6Þ

(a) (b)

cell barycenter
face center

Figure 1. 2D illustration of the two stages of one FVTD iteration step: (a) Field values at face centres are
computed from the values of the fields at adjacent barycentres; and (b) Barycentre values are updated using

‘fluxes’ through the faces.
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To avoid reflection the outgoing waves have to impinge perpendicularly onto the boundary,
since the Silver-M .uuller RBC only considers variations in the direction perpendicular to the
boundary surface. For radiation problems (quasi-spherical waves), this requirement can be
nearly satisfied by forming the outer boundary as a sphere. Hence, although the Silver-M .uuller
condition is a first-order RBC, the geometrical flexibility of the outer boundary allows
to enhance the accuracy much beyond that of a common first-order scheme. More
sophisticated boundary conditions such as the Berenger’s perfectly matched layers (PML)
may be applicable as well, either by direct implementation into FVTD or in a hybrid FDTD–
FVTD approach [6].

2.3. Excitation

To excite a structure (e.g. an antenna), energy has to be coupled into the system. In our FVTD
algorithm two possibilities are introduced:

* point sources (hard/soft),
* constrained fields.

A point source introduces the electromagnetic energy by impressing the E- and/or the H -field
either in a barycentre or through ‘fluxes’ at a triangular face-centre of a tetrahedron. Hard point
sources impress the source field according to the excitation function. They may violate the
continuity of the tangential fields and therefore cause reflections. In contrast, a soft source
takes into consideration the field values of the former time step and thereby produces less
reflections.

If the propagation mode of the feed is known a priori (as in a coaxial line) constrained fields
can be used to excite the electromagnetic field in FVTD. The known field distribution is
impressed on a transverse plane of the transmission line (that is called the source plane). The
source fields are introduced as incoming ‘fluxes’ and thus are integrated naturally in the FVTD
algorithm. Since the ingoing ‘fluxes’ in the source plane are known, this inherently constitutes an
RBC. For broadband characterization of a device a modulated Gaussian pulse is used as
excitation.

2.4. Scattering parameters

To perform a full-wave S-parameters extraction, a port plane (similar to a source plane) is
embedded in the mesh. On each of the discretized triangles of this plane the separated incoming
and outgoing ‘fluxes’ (pre-calculated in the frame of the FVTD algorithm) are used to determine
the tangential E- and H -fields belonging to the incident and the reflected waves in the feed line
[7], see Equation (4). Using these fields the frequency-domain S-parameters are computed
performing a discrete Fourier transform (DFT).

2.5. Near-field to far-field transformation (NFFF)

To compute the far-field radiation pattern, Love’s equivalent principle is used [8]. The radiation
integrals are solved on an imaginary Huygens’ surface enclosing the radiating device. On each of
the surface’s discretized element, the equivalent sources are computed using the tangential fields
on the elements. The tangential fields are either obtained using MUSCL or are interpolated
from the fields in the surrounding barycentres, depending whether the NFFF box is coincident
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with a surface in the mesh or not. The box may have an arbitrary shape, that can be adapted to
the problem. For radiating devices located in a spherical computational domain, a spherical
NFFF surface is advantageous. The 3D far-field data are extracted first performing a DFT on
the equivalent sources and then numerically evaluating the radiation integrals.

2.6. Computational costs

Since the FVTD scheme is applied in an unstructured mesh more geometrical data have to be
stored than in the classical FDTD scheme. Additionally, for second-order accuracy in time and
space the field components at three different time steps as well as the field gradients have to be
stored. This results in an approximately ten times larger memory needed per cell in comparison
to FDTD. However, in spite of the larger cost per FVTD cell a significant saving of resources in
comparison to classical FDTD can be achieved for complex structures: A drastic reduction of
the number of cells is obtained in the inhomogeneous FVTD meshes because of two reasons.
First, coarser meshes are sufficient to approximate the structure with the same accuracy. In
Reference [9] it is stated that conformal meshing of a cylinder allows four times larger cell sizes
compared to a staircased mesh if the same accuracy should be obtained. In three spatial
dimensions this gives a 64 times smaller number of conformal cells needed in the mesh. Second,
huge volume ratios of large cells to small cells in the mesh are possible. The inhomogeneous
mesh of the broadband double-ridged horn antenna contains roughly 3 millions tetrahedrons.
The smallest cells exist in the coaxial cable, where the mesh can be locally assumed as uniform.
To fill the whole model with this uniform mesh, approximately 200 millions cells are needed.
This results in a ratio of uniform to conformal cells of 67, giving a memory saving factor of
about 6.7. Additionally local time steps can be applied in an inhomogeneous mesh [10]. In the
presented case the fundamental time step Dt is applied in the feeding region, whereas at the outer
computational boundary a time step of 4Dt can be used.

In the following section, the geometry and the FVTD discretization of the simulation model
for the broadband double-ridged horn antenna are discussed.

3. HORN GEOMETRY

Horn antennas are widely used since they have a simple construction, are easy to excite and
exhibit large gain. They are employed e.g. as feed elements in satellite tracking systems or
communication dishes and they serve as a standard antenna for calibration and gain
measurements. Since they exhibit limited bandwidth, great efforts have been made to enlarge
the operational bandwidth. Ridges on the side flares are introduced to extend the bandwidth,
similar to ridges in a waveguide that expand the separation between the cut-off numbers of its
dominant and first higher-order mode. The design of the double-ridged horn antenna reaches
back to the late 1950s [3]. Figure 2 shows a 3D view of the simulation model of the double-
ridged horn antenna. The geometry of the horn can be decomposed in several parts. There is the
feed section (part no. 1 in Figure 2, details are shown in Figure 3) consisting of a coaxial line and
a cavity. Two exponentially shaped ridges (no. 2 in Figures 2 and 3) reach from the feed section
to the horn aperture and are aligned with the E-plane (y–z-plane). The lower part (with respect
to the aperture of the horn) can be seen as a ridged E-plane sectoral horn. The flaps of this part
(no. 3) are tilted in the H -plane (x–z-plane). Two wedges (no. 4) are located between them. The
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upper part is essentially a pyramidal horn. The upper flaps (no. 5) with a different tilt
angle in the H -plane are attached to the lower flares. The flaps tilted in the E-plane are replaced
by two copper straps (no. 6) per side which control the width of the radiation pattern
for frequencies below 4 GHz [3]. It should be noted, that the wall thickness is included in the
model. The dimensions of the aperture are 184� 130 mm2 and the total antenna height is
126:5 mm:

Figure 3 shows the feed section (part no. 1 in Figures 2 and 3) of the double-ridged horn
antenna. For better visibility the side flaps are removed and only the ridges (no. 2) with the
feeding and the cavity (no. 7, partly cut open) are shown. The input feed consists of a type N
input connector followed by a coaxial line (no. 8). This connector is specially manufactured to
prevent the excitation of higher-order modes and to support a power level up to 5 kW: The inner
conductor of the coaxial line is led through a hole in the first ridge and is connected to the
second ridge forming a short circuit. The cavity located below the input section serves as a

Figure 3. Feeding section of the doubled-ridged horn. 1: Ridges, 2: Cavity, 3: Coaxial feed, 4: Source
plane, 5: Port plane. Wedges and other parts are removed for better visualization.

Figure 2. Tilted front view of the antenna model. 1: Feed section, 2: Ridge, 3: Lower flare, 4: Wedge, 5:
Upper flare, 6: Copper strap.
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transformer between the coaxial TEM-wave and the ridged-horn field pattern. The
transversal source plane (no. 9) and the transverse port plane (no. 10) are embedded in
the coaxial cable mesh. Figure 4 shows the surface mesh of the antenna. The strong
inhomogeneity of the mesh can be observed in the inset that shows a magnification of the feed
section. The transition from the small cells on the coaxial cable to the large cells on the antenna
surface is accomplished over a short distance. Thus the total number of cells is reduced
significantly. The surface of the coaxial feed is discretized with lmin=25; the antenna surface
and the outer computational boundary are meshed with lmin=8 and lmin=5; respectively
(wavelengths at 18 GHz). Therewith the volume ratio of the small tetrahedrons in the
feed region and the large tetrahedrons in the outer computational area is approximately 1:125.
Like in all time-domain techniques, the smallest cell determines the applicable time step
for stability, but the 3D explosion of the number of cells is avoided in the inhomogeneous
mesh. In Figure 5 the cut-open computational boundary is shown with the double-ridged
horn visible in the inside (the volume-filling tetrahedrons are not shown). The upper part of
the boundary consists of a hemisphere, whereas the lower section is a truncated cone
(frustum). The hemispherical shape is chosen to provide a perpendicular incidence of the
radiated waves to the front of the antenna. In the back of the antenna the cone is adapted to the
antenna geometry in order to minimize the number of cells. Still the overall computational
domain is very large, considering that the hemisphere has a diameter of 17 wavelengths at
18 GHz:

4. RESULTS

The characteristics of the above-described antenna are obtained in the 1–18 GHz frequency
range using our FVTD algorithm. The radiation patterns, the return loss and the gain are
discussed in the following.

Figure 4. Mesh inhomogeneity in the feed region.
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4.1. Radiation patterns

Figures 6 and 7 show radiation patterns in the E-plane and H -plane, respectively, of the double-
ridged horn antenna obtained by the FVTD simulation. Results at 2, 4, 8 and 16 GHz are
displayed normalized to the pattern maximum over all directions. The simulated results are
compared to measurements taken from Reference [3] that were performed in an anechoic
chamber. The measured radiation patterns are normalized to the simulated ones in broadside
direction ðy ¼ 08Þ: The overall agreement between simulation and measurement is very good
over the entire frequency range. All simulation results for all frequencies have been obtained in a
single computational run. Although for low frequencies the mesh is very fine ð� lmax=140Þ; the
computational boundaries (with RBC) are placed very close to the radiator in terms of
wavelengths. That may explain the small difference between the simulation and measurement
results at 2 GHz caused by an increased reflection from the RBC. For higher frequencies the
mesh of the horn antenna model is coarser ð� lmin=8Þ but the computational domain is larger
(in terms of wavelengths).

From the experimental side, the antenna under test must be irradiated by a plane wave
(uniform amplitude and phase). To nearly realize plane wave illumination, the receiving test
antenna must be located in the far-field (Fraunhofer) region of the emitting antenna. To fulfil
the far-field condition, the two antennas have to be separated by a distance

R5
2D2

l
ð7Þ

where D is the largest dimension of the antenna. At a distance R given by (7) the maximum
phase deviation in the receiving antenna area between the incident wave and a plane wave is p=8:
In the measurement of the double-ridged horn antenna the plane-wave far-field condition (7) is
violated for frequencies larger than f ¼ 12 GHz: This problem is believed to be the reason for
the discrepancy in Figures 6 and 7 at 16 GHz between the simulation and the measurement.

After successfully validating the simulation results with measurements, full 3D radiation
patterns are illustrated in Figure 8 in logarithmic scale for the frequencies 2, 4, 8 and 16 GHz:

Figure 5. Cut-open computational boundary (with RBC). The horn antenna is visible inside.
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Figure 6. Simulated and measured E-plane radiation pattern at 2, 4, 8 and 16 GHz:
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Figure 7. Simulated and measured H -plane radiation pattern at 2, 4, 8 and 16 GHz:
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Considering only the main E- and H -plane radiation patterns, a major drawback of this class of
horn antennas at high frequencies remains undetected [3]. At lower frequencies the radiation
patterns show, as expected, a good broadside main lobe. For f > 11 GHz higher-order modes
deform the pattern and four side lobes appear in the diagonal planes of the horn aperture. With
increasing frequency, these side lobes become even larger than the broadside lobe.

4.2. Return loss

In Figure 9, the simulated return loss is compared to measured results. The overall agreement is
satisfactory, but it should be noted that the double-ridged horn antenna is extremely sensitive
with respect to even small geometrical changes. Not every manufacturing detail of the physical
horn antenna has been taken into account in the simulation model, e.g. the gaps that exist
between the lower and the upper flares.

4.3. Gain

Figure 10 shows the comparison between the simulated broadside gain of the horn antenna and
the corresponding measurement. In addition the simulated maximal gain (i.e. over all directions)
is displayed. The reflection coefficient S11 that is extracted in the simulation is taken into account
in the computation of the simulated antenna gain to reproduce the experimental conditions. For
discrete frequencies (4, 9, 14, 15, 16 GHz) the 3D radiation patterns in linear scale are shown as
well. At 4 GHz the radiation pattern shows the expected well-behaved shape, whereas already at
9 GHz a slight degradation of the pattern can be observed. A strong deformation of the
radiation pattern is apparent in the frequency range of 10 GHz4f414 GHz and f516 GHz:
In this frequency range the broadside and the maximum gain are not coincident, since the main
radiation occurs in the ‘side’ lobes and not anymore in the broadside lobe. At 15 GHz the
broadside lobe is showing up again causing the maximum gain to return to the broadside
direction. For higher frequencies the broadside lobe disappears again. The discrepancy between
broadside simulated and measured gain for frequencies f516 GHz may be caused by the
above-mentioned degradation of both measurement and simulation towards high frequencies.
Additionally manufacture-caused gaps between the single antenna components (e.g. lower and
upper flaps), that are not considered in the model, might play a significant role at high
frequencies as investigated in Reference [3].

Figure 8. 3D logarithmic radiation pattern from �20 to 0 dB at 2, 4, 8 and 16 GHz:
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Figure 9. Simulated and measured return loss.

Figure 10. Simulated and measured broadside gain of the double-ridged horn antenna. In comparison the
simulated maximal gain is plotted.
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5. CONCLUSION

A broadband double-ridged horn antenna was simulated with the FVTD method. The results
show the technique’s ability to handle complex geometries. Curved and oblique surfaces as well
as fine structural details are treated accurately since the core FVTD algorithm works in an
unstructured tetrahedral mesh, unaffected by the cells shape and size. In a single simulation run,
the near-field data, the radiation patterns and the scattering parameters of the antenna have
been calculated for a frequency range of 1–18 GHz: A good agreement was found with the
measurement data, showing the accuracy and versatility of the FVTD method applied to
practical problems.
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