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Abstract — This paper reviews the recent advances of finite-
volume techniques applied to the solutions of Maxwell’s equa-
tions, placing emphasis on the microwave engineering perspec-
tive. The theoretical foundations, as well as variations of cell-
centered finite-volume algorithms are described together with the
modules necessary for the practical application of the method.
The main advantage of finite-volume algorithms is their applica-
bility to unstructured meshes, which provides great geometrical
flexibility for modeling complex electromagnetic problems. As a
3-D simulation example, the coupling between two Archimedean
spiral antennas is presented, illustrating the outstanding capabil-
ities of the method but also addressing the associated computa-
tional costs. Weighting the strengths and drawbacks of the finite-
volume time-domain method, a summary of its potential is given
in the conclusion of the paper.

Index Terms — Computational electromagnetics (CEM), Time
domain analysis, Frequency domain analysis, Finite-Volume
Time Domain (FVTD) method.

1. Introduction

The continuous advancement of microwave circuits and
electromagnetic devices towards increased functionality
and performance requires simultaneous development of
design tools that are able to keep up with the increased
level of sophistication in circuit design and realization.
This need has fueled the progresses of electromagnetic
simulation codes, which have been furthermore empow-
ered by the spectacular development of computing hard-
ware. As a result, electromagnetic simulations of struc-
tures with increasing size and complexity become feasi-
ble using off-the-shelf personal computers and general-
purpose field solvers. Among the computational algo-
rithms that are applied to the solution of electromagnetic
problems, the Finite-Difference Time-Domain method
(FDTD), the Finite-Element Method (FEM), the variations
of the Method of Moments (MoM), and the Transmis-
sion Line Method (TLM) can be mentioned as some of
the more prominent examples. Efforts are still made to
bring improvements to those numerical techniques, as no
single method can claim a global superiority in efficiency
and accuracy for all problems encountered in the multitude
of today’s electromagnetic systems. Therefore, the coexis-
tence of various algorithms is essential to widen the range
of standard and non-standard problems that can be simu-
lated with practical relevance. In this perspective, besides
advances in the mainstream algorithms, investigations of
less established methods represent an alternative way of
expanding the capabilities of numerical electromagnetic
modeling. This paper describes the investigations of one

of the less known techniques, the Finite-Volume Time-
Domain (FVTD) method. It reviews the present state of
the research and addresses the potential of the method for
engineering applications either as stand-alone, or in hybrid
implementations.

The FVTD method has been introduced at the very end
of the 1980’s [1][2] as a powerful technique to solve
Maxwell’s equations. It takes its inspiration from the
finite-volume techniques that are used to solve the govern-
ing equations of fluid dynamics in their conservative form.
The FVTD method is characterized by a great geometrical
flexibility since it can be applied in unstructured polyhe-
dral meshes. While other elementary shapes are conceiv-
able, the method is commonly implemented in tetrahedral
meshes, which permits to model complex structures with
great fidelity. Therefore, the most obvious advantage of
the FVTD unstructured mesh arises from the conformal
approximation of curved and slanted surfaces. However,
an even more relevant advantage comes from the possibil-
ity to locally adapt the size of the finite-volume cells to
the geometrical features of the modeled structures. This
is beneficial for instance, for the modeling of structures
with large dielectric contrasts: Materials with a large di-
electric permittivity can be discretized with smaller cells
than lower permittivity materials, bearing in mind that spa-
tial discretization needs to be a small fraction of the wave-
length in the medium (< A./10). Furthermore, the reso-
lution of small structural details (e.g. with features in the
order of A,/100) embedded in larger objects also benefits
from an inhomogeneous mesh to minimize the number of
cells in the discretized model. In all cases, the transition
from smaller to larger cells can be realized smoothly using
an unstructured mesh. The local mesh refinements are nat-
urally incorporated in the FVTD algorithm, and therefore,
the complexity of the simulation is reduced to a meshing
problem. Since the FVTD method combines the flexibil-
ity of an unstructured mesh with the advantages of an ex-
plicit time-domain method, it can be considered somewhat
halfway between the FEM and the FDTD method.

This paper reviews the investigations performed by the au-
thors on the FVTD method during the last few years. Sect.
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2 gives a brief description of the basics of the algorithm,
placing the emphasis on the physical interpretation rather
than on the mathematical treatment. Based on the funda-
mental finite-volume integral equations, many numerical
implementations are possible. Some of the most common
variations in the algorithm are described in Sect. 3, to-
gether with a brief discussion on the frequency-domain
implementation of the algorithm. Section 4 describes spe-
cific implementation requirements relevant for a practical
application of the FVTD method to microwave engineer-
ing problems. Later, as an illustration, the challenging ex-
ample of the mutual coupling between two cavity-backed
Archimedean spiral antennas is presented in Sect. 5. For
validation, the simulation results are compared with mea-
sured data. In the conclusion, the paper assesses the advan-
tages and drawbacks of the FVTD method as a general-
purpose electromagnetic field solver. More generally, it
predicts the potential of conformal time-domain meth-
ods in the future landscape of electromagnetic simulation
tools.

II. FVTD fundamentals

The FVTD method is based on Maxwell’s curl equations
written in a conservative form [3] and integrated over a
finite-volume [4]:

d > L =
—5/f/‘/BdU=ﬂavanda
a - . o
— Ddv={(p y3yn x Hda.
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This system of equations relates integrals over the volume
V to surface integrals over the boundary dV of V. The in-
tegrand on the right-hand side (RHS) is called the "flux”
through the boundary surface 0V and is constructed us-
ing the outward-pointing normal vector 7 on each infini-
tesimal surface element da. In the original fluid dynamics
interpretation, the system of equations (1) considers the
variation of conserved quantities in a given volume (left-
hand side - LHS) that is compensated by fluxes through
its boundary surface (RHS). It is also remarkable that only
the tangential field components on the closed surface 9V
are relevant in the exchange of information between the
volume V and its surroundings, which is in accordance to
the uniqueness theorem of electromagnetic fields.

The numerical implementation of the fundamental FVTD
equations requires the discretization of the system (1)
in space and time. The spatial discretization is obtained
by partitioning the computational domain into elementary
polyhedral cells. The cell with index i is characterized by
its volume, denoted as V;, and by its boundary surface aV;,
which is composed of N; faces. Each polygonal face of
the polyhedral cell is characterized by its area Fj and its
outward-pointing normal vector 71y (k = 1, ..., N;). Under
the assumption that the cell i has homogeneous permittiv-
ity &; and permeability u;, the system of equations (1) can

ey

be written in a discrete form as
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where the bracketed values (-) indicate spatially averaged
values, either over the volume V; (LHS) or over the surface
Fi (RHS). Although discretized, this set of finite-volume
equations (2) is still exact, providing the spatially averaged
values are known exactly. However in practice those aver-
age values are only found through approximations, which
introduce numerical errors in the algorithm.

(@)

III. Algorithm variations

Many variations in the finite-volume algorithm for the sys-
tem (2) exist, depending on the choice of variable location
in the cells. Among all possibilities, the discussion here is
restricted to the class of spatially collocated cell-centered
algorithms. Those are characterized by the location of all
components of both the E and H field in the barycenters
of the volumes. For the elementary cell i, this can be ex-
pressed as the following approximation

(3) <ﬁ>v %IZI’BCJ éﬁl and <E> ’N\’EBC,' é

i Vi

.
E;,

where the subscript BC indicates the barycenter location.
This approximation is only meaningful for elementary
cells with dimensions corresponding to a small fraction of
the wavelength A in the considered medium. Accordingly,
the averaged field vectors on the face k are approximated
by the values in the face center (denoted by the subscript
FC)

4) <ﬁ> ~ ﬁFC,k 2 I:Ik and <E> ~ EFC,k = Ek.
Fi Fi

Considering the class of cell-centered finite-volume algo-
rithms of interest here, the numerical computation of the
fluxes 7y x Ek and 7y X Hk on the face centers of the el-
ementary cells provides additional room for different ap-
proximation strategies. Some frequently used techniques
are briefly described in the following, addressing their ad-
vantages and disadvantages.

A) Flux-splitting algorithm

The flux-splitting algorithm has been adapted in [2] for
Maxwell’s equations. It decomposes the total flux across
a face into incoming and outgoing fluxes. This separation
is based on the method of characteristics with solutions
propagating with velocities given by the eigenvalues of the
Jacobian matrix of the system [5],[6]. This can be inter-
preted as decomposing the field into plane waves that are
propagating normally to the cell faces. The finite-volume
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equation can then be written as

J0H;
—ui Vi—— —Z(nkxE++nkxE>Fk
(5) o N:
aEi d - rr+ - -
8,"/,'?: Z (nkXHk +nkXHk)Fk.
k=1

The superscripts + and — on the RHS of the equation
mark the field components associated with the outgoing
and incoming fluxes, respectively. The outgoing fluxes are
computed based on the barycenter field values in the con-
sidered cell i, whereas the incoming flux through face k
is obtained from the field values in the neighboring cell
J sharing the face, as depicted schematically in Fig. 1(a).
The reader is referred to [3],[7] for a detailed mathematical
description of the flux-splitting algorithm.

To improve the approximation to second-order accuracy,
the Monotone Upstream-centered Scheme for Conserva-
tion Law (MUSCL) [8] is generally applied together with
this flux-splitting algorithm. The MUSCL 1mproves the
approx1mat10n of the face center values E;" P E; o H and
H by using the gradient information of each ﬁeld com-
ponents inside the cell (linear approximation).

(a) Flux splitting

(b) Flux averaging

@ Barycenter
= Face center

@ Barycenter
O Face center

Fig. 1. Schematic representation of the computation of the fluxes
(a) Flux splitting, (b) Flux averaging. Only selected E-field vec-
tors are indicated for clarity.

To obtain explicit update equations, the time derivative on
the LHS of (5) is discretized using standard techniques
such as the Lax-Wendroff predictor-corrector scheme [9]
or a Runge-Kutta type integration scheme.

The flux-splitting algorithm provides a robust update equa-
tion for the FVTD time-stepping iteration. The treatment
of boundaries is naturally incorporated in the algorithm,
and the method shows a low level of numerical dispersion
(phase error). However, it must be mentioned that the al-
gorithm shows a dissipative behavior because of the up-
wind approximation of fields on the face centers [10]. This
dissipation is a drawback of the method, which becomes
apparent for coarser spatial discretizations. In broadband
simulations, this degrades the results at the higher end of
the frequency spectrum, where the mesh becomes coarser
with respect to the wavelength. For the flux-splitting al-
gorithm, the dissipation, besides the geometric features to
be resolved by the mesh, sets the basic requirement of a

sufficiently fine spatial discretization in order to obtain a
satisfying convergence in the solution. In particular, dis-
sipation may compromise the accuracy of results in the
simulation of resonant devices.

B) Flux-averaging algorithm

The flux-averaging algorithm has been introduced in [11]
as a non-dissipative finite-volume scheme. The field values
on the cell faces, necessary to compute the fluxes on the
RHS of the FVTD equations (2), are obtained as a simple
average of the two barycenter values of the neighboring
cells. This can be written as

Ni -
9 H; - Ei+E;
Vta[ =k21<nkx 121>Fk
© i _ N (L A
S,V,—t’ = Z nyr x Fy
k=1

In this system, j is used as a subscript for the vector field
values in the barycenter of the neighboring cell of i sharing
the face k, as depicted in Fig. 1 (b). The spatial approxi-
mation is combined with a leap-frog time discretization in
order to obtain a fully explicit time-stepping scheme. The
scheme has been proven to be non-dissipative, and vali-
dation examples have been proposed for 2-D in unstruc-
tured triangular meshes and for 3-D in structured hexahe-
dral meshes [11]. The non-dissipative behavior is achieved
at the cost of an increasing numerical dispersion (simi-
larly to FDTD). However, the general applicability of the
scheme seems very limited. First, spurious oscillations are
observed in unstructured grids [12]. Second, the scheme
exhibits grid decoupling effects that are directly observ-
able in 2-D implementation: A line source excitation in a
cell barycenter affects the H-field in the neighboring cells,
however the E-field only in the second next neighbor. This
results in a checkerboard pattern for a square grid, and in
a patched pattern for a triangular mesh. This can be intu-
itively understood considering that the method is staggered
in time (leap-frog), but collocated in space. Finally, addi-
tional attempts by the authors to implement the scheme in
a 3-D tetrahedral mesh have yielded unsatisfactory results.

C) By-Schemes

A compromise can be made by combining the dissipa-
tive flux-splitting and the non-dissipative (but dispersive)
flux-averaging schemes through the so-called B-schemes
[13],[14]. This basically corresponds to a weighted aver-
age between the two previously presented schemes. An
extension to this concept is given by the By -scheme de-
scribed in [15], which uses two parameters to obtain a
better control of the tradeoff between dissipation and dis-
persion. This class of schemes however has not found a
widespread acceptance because of the difficulty to deter-
mine general control parameters valid for any mesh. This
represents a drawback that is especially relevant for 3-D
tetrahedral meshes, since no guarantee exists that a set of
parameters will yield meaningful results.

138

Proceedings of the European Microwave Association



C. FUMEAUX, D. BAUMANN, K. SANKARAN, K. KROHNE, R. VAHLDIECK AND E. LI

D) Frequency domain algorithms

While time-domain implementations have been able to de-
liver outstanding results for broadband devices, the inves-
tigation in frequency-domain appears to be attractive when
considering narrowband and/or resonant devices for which
the long settling times along with the previously men-
tioned dissipation can render the application of a time-
domain solver futile. However, as opposed to the tradi-
tional time-domain implementations of the finite-volume
technique, which rely on an update scheme, where every
time step requires looping through all the cells of the
computational domain, a frequency-domain solution de-
mands a matrix formulation. Such a formulation in terms
of a state-space system has been introduced recently for
the flux-splitting [16] as well as the flux-averaging [17]
scheme.

If the individual components of the electric and magnetic
fields are collected in the state-vector X, (2) can be directly
transformed into

(7) sX = AX + Bx(s).

where s is the complex frequency and A is referred to as
the system matrix. Each row of A computes the time deriv-
ative of one field component in one cell referring to the
cell itself and its surrounding neighbors. Thus, it has to
perform inter- or extrapolation, compute the cross-product
with the respective normal vector and the product with the
interface area, and sum the result of the faces that compose
a particular cell. Together with the output equation

®) y(s) = CX 4 Dx(s),

where B and C are port operators that map the input and
output vectors x and y to the computational domain, equa-
tions (7) and (8) form the standard state-space formulation
for linear time invariant (LTI) multi-input multi-output
(MIMO) systems. A feedthrough D may be present, de-
pending on the scheme that is being deployed.

The system’s transfer function can be computed by solving
(7) for X and placing it into (8). It then depends on the na-
ture of the input and output quantities x and y whether the
transfer function is the device’s scattering matrix or its im-
pedance matrix. Since the flux-splitting scheme gives ac-
cess to the individual incoming and outgoing wave ampli-
tudes, the result of a frequency-domain solution is a scat-
tering matrix, whereas the flux-averaging scheme yields
the total fields on the port faces, which are related to the
generalized port currents and voltages. For this reason, if
the flux-averaging scheme is applied, a frequency-domain
solution of (7) and (8) results in the device’s impedance
matrix. In that case the feedthrough D vanishes.

The computational load lies in the solution for the state
vector X from (7). The solution is reasonably efficient for
small scale problems, where a full LU decomposition of
the left-hand side (s I — A) is possible. Large problems re-
quire the application of iterative solvers, which, due to the

high condition number of (sI — A), tend to suffer from
slow convergence.

An approach to combine the superior shape approxima-
tion capabilities of the finite-volume method with the ef-
ficiency of a frequency-domain solver for resonant de-
vices is the application of a two-step model order reduc-
tion (MOR) technique [18] as demonstrated in [19].

IV. Practical implementation

In the following, the important aspects for a FVTD sim-
ulation with practical relevance in microwave engineer-
ing are described. The flux-splitting algorithm described
in Sect. III A) is used in this framework, although most
of the practical implementations shown in this section can
be employed in other formulations too. The simulation ex-
ample, that follows in Sect. V, is also computed using the
flux-splitting algorithm which has proven to be the most
robust FVTD algorithm of its class.

A) Mesh generation, mesh quality

Tetrahedral meshes typically constitute a very convenient
discretization for FVTD simulations as they provide an un-
matched flexibility for conformally approximating com-
plex structures. In addition, mesh generators that provide
high-quality tetrahedral meshes have been developed in
several engineering areas and are readily available. A tetra-
hedron is deemed to be of good quality if it is nearly reg-
ular, i.e. if its edges are all approximately of equal length.
The quality of the mesh is crucial for an accurate and effi-
cient FVTD simulation for two reasons:

1. Stability criterion: The stability criterion of an explicit
method determines the maximum usable time step Ar for
stable iteration and it is given by the famous Courant—
Friedrich-Lewy (CFL) condition known from finite-
difference methods. For the FVTD method, an equivalent
criterion is obtained from the minimum volume-to-surface
ratio taken over all the cells

1 Vi
O] t < —min (N71>
c i Zkl=l Fk

A regular tetrahedron exhibits an optimal volume-to-
surface ratio for a given volume. Therefore, a mesh of
nearly regular tetrahedrons permits to run the FVTD
march-in-time with a larger step than a mesh composed
of strongly irregular tetrahedrons of similar volumes.

2. Accuracy: The approximation of the volume inte-
gral (3) and surface averages (4) using the value in the
barycenters degrades for irregular shapes. Flat or needle-
shaped tetrahedral cells increase the mesh-induced numer-
ical noise and negatively affect the spatial convergence of
the algorithm. As an empirical rule of thumb, using an ir-
regular cell - with a shortest edge length ¢,,;,, that is much
smaller than the longest edge £, - does not improve the
convergence of the solution compared to a regular tetrahe-
dron with edge length ¢,,,,, despite the fact that the irreg-
ular cell has a much smaller volume.
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B) Material boundaries

The material boundaries are taken into account naturally
in cell-centered FVTD algorithms, since the interfaces be-
tween media correspond to cell faces. For example, the im-
plementation of the perfect conducting surfaces is straight-
forward, since the associated boundary conditions corre-
spond to nulling fluxes

Perfect electric conductor (PEC): 1y X E =0
Perfect magnetic conductor (PMC): 7y x Hj=0.

(10)

In addition to the standard usage, PEC and PMC surfaces
are employed when exploiting symmetries in order to re-
duce the computational volume.

C) Domain truncation

In any volume-discretization technique, reflection-free do-
main truncation is indispensable to handle open prob-
lems (radiation and scattering). For this purpose, accu-
rate absorbing boundary conditions (ABC) have been de-
veloped, which can reduce the unphysical numerical re-
flections from the outer computational boundary, with the
goal of mimicking extension of space to infinity. A com-
mon domain truncation that is used in conjunction with the
FVTD method is the Silver-Miiller ABC (SM-ABC). In
the FVTD implementation, the SM-ABC requires setting
the incoming fluxes to zero at the outer boundary. How-
ever, it is only first-order accurate in space, and performs
at its best when the incident wave is normal to the trun-
cating boundary. Hence, in order to achieve good perfor-
mance for radiation problems, the boundary of the FVTD
domain is shaped in the form of a sphere around the simu-
lated structure. If the radius of the sphere is large enough,
the shape of the (asymptotically spherical) phase fronts of
the radiated fields matches the outer boundary, satisfying
the near-normal incidence condition. Therefore, despite its
first-order accuracy, the SM-ABC permits to achieve suf-
ficient performance for many engineering applications.

The principle of perfectly-matched layers (PML) that has
been introduced by Bérenger [20] in 1994 has revolution-
ized the treatment of domain truncation. Since then, many
different implementations have been proposed for adapt-
ing the technique to the FDTD method. Recently, investi-
gations on adapting the Bérenger PML techniques to the
FVTD method have been reported in [21],[22]. The ab-
sorber model is accurately characterized based on the con-
trol parameters, namely absorber thickness, loss-profile,
maximum loss and spatial discretization. The optimal val-
ues for these parameters were found by studying the per-
formance of the absorber on a 2-D structured triangular
mesh. The reflection coefficient as a function of the angle
of incidence, obtained from numerical experiments, is rep-
resented in Fig. 2. At normal incidence, both the SM-ABC
and the FVTD-PML exhibit comparable performance (~-
50 dB). When the angle of incidence is gradually increased

away from normal, a degradation of the absorption is no-
ticed. However, for all angles of incidence, the FVTD-
PML clearly outperforms the SM-ABC.

The idea of uniaxial PML was extended to radial PML
in FVTD [23] to avoid the corner regions encountered in
standard FDTD-PML implementations. The direction of
wave attenuation inside the absorber is given by the direc-
tion of the anisotropy. For the uniaxial absorber this di-
rection is chosen along a particular direction (x, y or z
axis). In the case of radial absorber, the anisotropy is cho-
sen along the radial direction. Update equations are de-
rived using a transformation from the locally uniaxial to
the globally radial absorber characteristics.

Further PML models like complex-frequency shifted PML
(CFS-PML), Lorentz material based absorber etc, have
been investigated in the framework of the FVTD method.
Theoretical analysis and numerical experiments confirmed
similar performance for all PML models studied [24].

N
o o
! n

/

Num. Refl. coefficient (dB)
&
o

!

0 15 30 45 60 75 90
Angle of plane wave incidence (degree)

Fig. 2. Comparison of the reflection coefficient as a function of
the angle of incidence for a plane wave impinging on an SM-
ABC and a PML domain truncation.

D) Port definition

Ports play a crucial role for the simulation of electromag-
netic devices, since they provide a defined way of impress-
ing energy into the system, and permit the extraction of
scattering parameters. As an additional challenge, ports
in certain configurations have to feature a reflection-free
truncation of the computational space. Two main aspects
characterize the port definition in the FVTD method: First,
a port plane defining a phase reference must be introduced
in the unstructured mesh. Second, the flux-splitting algo-
rithm described in Sect. III A) is exploited for excitation as
well as for a field-based extraction of the scattering para-
meters without the need of computing additional network
parameters [7]. In the following, these two aspects are ad-
dressed.

Two ways of creating a port plane in FVTD are illustrated
in Fig. 3 for the case of a rectangular waveguide. The first
possibility is to introduce a discretized plane in the mesh,
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forcing the adjacent tetrahedrons to be aligned in a com-
mon plane located either on the computational boundary
or in the computational bulk (Fig. 3(a)). This procedure
assures a well-defined location of the port plane and en-
ables the use of the readily available field values on the
triangular faces of the port. The second way to create a
port is to define a virtual port plane by a set of regularly
spaced interpolation points at an arbitrary location in the
mesh (Fig. 3(b)). This offers a greater flexibility, since the
location of the port can be changed without the need of re-
meshing. The drawback is that an interpolation of the field
values onto the port plane becomes necessary.

’lv“"lw"
Y
s (oA W, A‘

ly:%: A M""{é‘l%{{

d 1K

Fig. 3. Port definition in FVTD: The port plane can be introduced
as (a) a meshed surface, or (b) as a virtual plane consisting of
interpolation points.

The incident wave a, and the reflected wave b through
the port plane are connected to the incoming and outgo-
ing fluxes. This fact is exploited to accomplish the multi-
functionality of the ports in FVTD:

— In order to impress energy in the port, a mode-
template vector is imposed on the incoming fluxes
creating a well-defined incident wave.

— In a similar manner, the port plane can be used to
truncate the computational domain with a SM-ABC
condition by forcing the incoming fluxes to zero, as
described in Sect. IV C).

— Inthe context of scattering matrix extraction, the ﬂm_(-
splitting algorithm is applied on the fields Ey and Hj
in the port plane. However, the split fluxes, as intro-
duced in (5), are corrected with a factor &, depen-
dent on the port mode p. The corrected outgoing (4)
and the incoming (—) flux ¢/~ can then be written
as [7]

PEH~ =i x Ef/T
an Lo = . . ~
= 5( ¥ X Ep £np x (I’lk Xgank>>.
The introduction of the correction factor &, is necessary
in order to reveal the mode information, which is lost be-
cause of the plane-wave character of the split fluxes. The
corrected fluxes are solely used for the computation of
the scattering parameters — therefore they do not narrow
the generality of the core FVTD algorithm. The correction
factor is known implicitly from the mode template vectors
that are used in the scope of the excitation. Eventually, the
total tangential electric fields of the incident wave a and
the reflected wave b can be computed from the corrected
fluxes (11) according to
(12) Eh=—iix gt
E¢=—nx "™,
In a multi-mode environment, the orthogonality of the
modes together with the knowledge of the mode-template
vectors enable the determination of the mode amplitudes,
and consequently the computation of the generalized scat-
tering matrix [7].
E) Advanced features

The stability criterion in (9) essentially states that the
“worst” cell in the mesh determines the pace of the FVTD
time iteration. When considering a good quality mesh with
nearly regular tetrahedrons, the smallest cell determines
the fundamental time step Az. Therefore, when extremely
small cells are required to resolve details of a structure,
the efficiency of the computation suffers from a march-
in-time with correspondingly short time step Af. To relax
the requirement set by a single stability criterion applied
over the whole mesh, a local time-stepping scheme has
been presented in [25]. The proposed technique is based
on an automatic partitioning of the computational domain
into sub-domains, where local time steps equal to power-
of-two multiples of the fundamental time step Ar are ap-
plied, i.e. At 2At4A¢, ..., =1 g, During the march
in time that is performed with the fundamental time step
At, the update is performed selectively according to the
sub-domain, e.g. cells in a sub-domain with local time-
step 4At will be updated only every 4'” iteration step.
Limiting the jump at all interfaces between sub-domains
to a factor of two in Ar allows implementing a general-
ized, accurate and robust two-level connection between
sub-domains. Depending on the problem, the local time
stepping procedure was found to typically speed up the
computation by a factor of 2 to 5.

Other techniques have been proposed to improve the effi-
ciency of the computation for specific problems. Among
the specialized techniques, the wire model of [26] and the
FVTD/FDTD hybridization of [27] can be mentioned.

V. Application example

The simulation of the coupling between two Archimedean
spiral antennas is presented in the following as an illus-
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tration of the capability of the FVTD method to model
extremely complex geometries. The Archimedean spiral
antenna is characterized by a fixed arm width and operates
with stable input impedance and radiation characteristics
over a wide bandwidth. The frequency range of circular
polarized radiation is determined by the inner and outer
radii of the spiral. For most applications unidirectional ra-
diation is strongly desired and hence spiral antennas are
often backed by an absorber-loaded cavity that provides
broadband suppression of the back radiation. A detailed
FVTD simulation of a cavity-backed Archimedean spiral
antenna for 2-18 GHz has been presented in [28]. The most
challenging aspect is the modeling of the two spiral arms
that extend over 26 windings, and therefore exhibit a high
contrast between the arm width of 0.25 mm and the total
arm length of more than 2 m. In addition, by employing a
highly inhomogeneous mesh, the 0.25 mm thin substrate,
the balun and the honeycomb absorber in the cavity can be
incorporated in the FVTD model. Comparisons of simula-
tions with measured data have shown excellent agreement
[28].

In the following, the coupling between two of such
Archimedean spiral antennas located in close proximity is
investigated. The first configuration considers both spirals
placed in a common plane as shown in Fig. 4. Both the spi-
rals are identical to the one presented in [28], except for the
fact that the honeycomb absorber has been replaced by an
ABC that provides a simplified model of the absorber. The
spiral has an outer radius of 26 mm, and is mounted on the
metallic cavity with an external diameter of 62 mm and a
height of 37 mm. The spiral on the LHS is excited through
the coaxial port of the balun using a broadband modulated
Gaussian pulse (2-18 GHz), and the response is registered
in the coaxial port of the balun of the spiral on the RHS in
Fig. 4.

Fig. 4. Configuration of the two spirals in a common plane. The
spiral on the RHS is displayed with part of its surface mesh and
is cut open to reveal the balun and the cavity. The inset shows the
detail of the mesh spiral around the center of the LHS spiral.

The coupling parameter Sp; computed in the FVTD sim-
ulation is shown as a function of the frequency in Fig. 5,

and compared to measured data. Considering on one hand
the low-level of the coupling between the antennas, and on
the other hand the complexity of the problem, the agree-
ment between the numerical and measured data is excel-
lent. Some of the ripples observed in the simulated Sy can
be explained through low-level reflections from the SM-
ABC truncation that is employed in this example. Based
on this result, it is clear that the general behavior of the
coupling can be fully and accurately predicted through nu-
merical simulation. Further analysis (not shown here for
brevity) at different distances exhibit a comparable agree-
ment between simulation and measurement, which further
demonstrates the robustness of the method.
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Fig. 5. Coupling parameter S| of the two spirals in the config-
uration of Fig. 4. The graph compares the results obtained from
the FVTD simulations with measured data.

A second effect of the coupling is manifested by the mod-
ification in the radiation patterns of the active antenna in
the presence of the second antenna. Because of the low
level of coupling, this effect is expected to be weak, con-
sequently providing a way of testing the sensitivity of
the numerical method. The radiation pattern of the spiral
with and without the second spiral in close proximity is
shown in Fig. 6. For illustration, the frequency is chosen at
10 GHz, i.e. at the center of the operating range, but simi-
lar results are also found at other frequencies. The patterns
are shown in the xz plane (as defined in Fig. 4) where the
effect of the second spiral is most visible. The upper graph
of the figure (Fig. 6(a)) compares measured and simulated
patterns for a single spiral in free-space. The center graph
(Fig. 6(b)) shows the corresponding patterns for the case,
when the spiral is operated in the presence of the in-plane
second spiral in the configuration of Fig. 4. The agreement
between simulation and measurement is excellent for both
cases. Based on this agreement, the comparison of the pat-
terns with and without the second spiral is then shown for
simulated data only in Fig. 6(c). The second spiral diffracts
radiation of the excited antenna and causes a small inden-
tation in the pattern at about 90 degree, i.e. at the location
of the second spiral. This effect is observed both in simu-
lation and measurement.
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Fig. 6. Patterns of the spiral antenna at 10 GHz. (a) Compari-
son of simulated and measured pattern for a single spiral in free-
space. (b) Comparison of simulated and measured pattern for a
double spiral configuration (Left-hand spiral is active). (c) Com-
parison of simulated patterns for single spiral in free-space and
for in-plane double spiral configuration.

Although the simulation of the two spirals in the in-plane
configuration represents a very challenging example for
any numerical method, the difficulty is further increased
for Cartesian grids when the spirals are tilted as shown in
Fig. 7. For the FVTD models, since there are no preferred
directions in the unstructured tetrahedral mesh, the com-
putational cost of the tilted configuration is identical to the
in-plane configuration.

Fig. 7. Configuration of the two spirals in tilted configuration.
Both spirals are rotated as shown, and the spiral enters are sepa-
rated by a distance of 86 mm.

The coupling between the spirals in this second configu-
ration is shown in Fig. 8, demonstrating the same level of
agreement between simulation and measurements. Again,
ripples observed in the simulation seem to arise from un-
physical reflection on the SM-ABC. Placing the boundary
at even further distance, or using a PML truncation is ex-
pected to suppress a part of these ripples.
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Fig. 8. Coupling parameter Sy of the two spirals in the tilted
configuration of Fig. 7. The graph compares the results obtained
from the FVTD simulations with measured data.

The results presented in this section have demonstrated
that a great level of accuracy can be achieved through the
use of a conformal time-domain method. This capability
comes at a certain cost. In terms of memory requirements,
the double spiral example benefits strongly from the mod-
eling in an unstructured tetrahedral mesh. All presented
simulations required between 2 and 3 GB memory, de-
pending on the distance between the spirals. This can be
regarded as a relatively modest cost considering the com-
plexity of the models. However, the real limitation of the
method is rather seen in the CPU time that is necessary to
obtain the shown results. For the simulation to yield con-
verging coupling parameters Sy over the whole consid-
ered frequency range, at least 12 ns have to be simulated.
This is necessary in order to allow the low-frequency com-
ponents of the pulse to propagate along the excited device
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from the feed to the active (radiating) region of the spiral,
to the second spiral, and there from the active region to the
feed. Noting that the present FVTD code is not optimized
for performance, the full simulation for the two spirals on
a standard modern PC translates in CPU times in the order
of days.

VI. Conclusion: assessment of the FVTD

method

This paper has reviewed recent efforts in the development
of cell centered FVTD algorithms, as a particular class of
conformal time-domain methods. Several relevant aspects
of a successful application of the method in microwave
engineering have been addressed, and an advanced simula-
tion example has been presented. This example has permit-
ted to illustrate the strengths and drawbacks of the method.
On the side of the drawbacks, two aspects need to be men-
tioned. The first one concerns the dissipative nature of the
flux-splitting algorithm. This puts an increased require-
ment on the maximal cell size that is required for a certain
level of accuracy, and can degrade the results at higher fre-
quencies. Alternative cell-centered algorithms that elim-
inate the dissipation at the expense of dispersion errors
have not been proven to be reliable until now. Higher-order
methods (e.g. [29],[30]) are often regarded as solution to
the problem, however, introducing additional algorithmic
complexity. The second problem of the FVTD method
concerns the efficiency of the computation. This is directly
associated with the spatial discretization using an unstruc-
tured mesh which inherently requires more operations per
cell and per iteration step than a Cartesian grid. Neverthe-
less, this is not a critical problem because complex models
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