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Abstract- The attractive features of the Finite-
Volume Time-Domain (FVTD) method for the 
solution of Maxwell’s equations come from the 
application in unstructured polyhedral meshes 
combined with an explicit time stepping. This 
paper reviews current developments of the FVTD 
method and provides an assessment of its potential 
as a general-purpose electromagnetic simulation 
technique. A tutorial on the FVTD algorithm is 
given first, followed by a discussion of the strengths 
as well as of the limitations of the method. More 
generally, the challenges associated with a 
widespread use of conformal time-domain 
techniques are described. The addressed points are 
illustrated by a representative application of the 
method, which involves the detailed modelling of 
dielectric resonator antennas (DRAs) in several 
configurations. 
 
Index Terms- Time-domain analysis, Finite-Volume 
Time-Domain method (FVTD), dielectric resonator 
antenna (DRA). 
 
 

I. INTRODUCTION 
 
The development of novel methods for 
electromagnetic (EM) simulations is motivated 
by the increasing need for numerical analysis 
tools, which are able to handle complex multi-
scale structures. In the class of methods based on 
a volume discretization of space, the Finite-

Difference Time-Domain (FDTD) method 
dominates the modelling of EM problems since 
many years. Numerous attempts have been made 
to circumvent the constraint of the original 
FDTD Yee scheme to structured Cartesian grids: 
In particular, various conformal approaches that 
locally alter the FDTD algorithm near curved or 
slanted surfaces have been proposed, as well as 
sub-gridding techniques that allow 
accommodating various scales of structural sizes 
(see, e.g. [1]). Besides those efforts, alternatives 
have been sought in time-domain techniques 
applied completely in unstructured meshes. This 
second approach presents the conceptual 
advantage of requiring no local algorithm 
alterations to handle non-Cartesian surfaces and 
small details, and thus reduces high-complexity 
problems to the meshing process. This has lead at 
the very end of the 1980's to the first Maxwell 
solver based on the Finite-Volume Time-Domain 
(FVTD) method [2],[3], which advantageously 
combines an explicit time stepping with an 
unstructured space discretization. 
 
The present paper first provides an introduction 
to the FVTD algorithm in Sec. II, emphasizing on 
the physical interpretation rather than on the 
mathematical formulation. It then describes in 
Sec. III the strengths as well as the limitations of 
the algorithm for EM simulations. The discussion 
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identifies challenges lying ahead for a 
widespread efficient application of the method. 
In Sec. IV, practical simulations illustrate the 
points discussed. The examples consider the 
simulation of different configurations of probe-
fed dielectric resonator antennas (DRAs). 
 

II. FVTD Tutorial 
 
The finite-volume formulation of Maxwell's 
equations is inspired from computational fluid 
dynamics. It is based on the Maxwell's curl 
equations expressed in their conservative form 
[4] with the condensed notation 
 

                 Div ( )
t
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In this equation, the six-component vector U  
contains all the E  and  field components, i.e. 

x y z, . The 6×6 matrix 
 describes the material parameters. Assuming 

an isotropic media, this matrix becomes a 
diagonal matrix filled with the permittivity  
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and the divergence operator Div is applied on 
each row of  according to ( )F U
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It is straightforward to demonstrate that, in (1), 
the curl terms in Maxwell's equations are 
reconstructed by applying this divergence 
operation (3) on the function  defined in ( )F U
(2). To obtain the finite-volume formulation, the 
conservative representation (1) of the Maxwell's 
system is integrated over a volume V , and the 

Gauss theorem is applied subsequently on the 
divergence term. This yields the finite-volume 
fundamental equations [5] 
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which relates volume integrals on the left-hand 
side to surface integrals on the right-hand side. A 
physical interpretation of (4) derived from fluid 
dynamics considers variations of conserved 
quantities in the volume V  that are compensated 
by fluxes  and  through the volume 
boundary . Those mathematically defined 
fluxes can be expressed as the vector product of 
the outward-pointing normal vector n  with the 
field vectors (H  or ), and therefore, are 
completely determined by the tangential field 
components on the boundary surface of the cells. 

HΦ
V∂
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For numerical implementation of (4), the full 
computational space has to be partitioned in a 
polyhedral mesh. For practical computations, a 
tetrahedral mesh appears attractive, because it 
offers accurate geometrical resolution of complex 
structures and can be created using widely 
available good-quality mesh generators. 
Considering an elementary tetrahedral cell with 
volume  and homogeneous material properties 
i  and iμ , the system 

iV
ε (4) can be expressed in the 
semi-discrete form as 
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where the fluxes are summed over the 4 
triangular cell faces with area  and outward 
pointing vector kn , with . In the 
system 

kF
,.= 1 ..,k 4

iE(5), the field vectors  and  iH
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associated to the considered cell i represent 
averages integrated over the cell volume. 
Correspondingly, the vectors kE  and kH , which 
are required to compute the fluxes H

kΦ  and E
kΦ , 

are averaged over the cell faces. The error in the 
computed solution of (5) is introduced through 
inaccurate numerical computation of these 
averaged values. 
 
Several possible implementations of the finite-
volume algorithm exist, and a fundamental 
classification can be provided by the way the 
field variables are located at a fixed given point 
in the elementary cells (finite volumes). The 
electric and magnetic fields can be collocated or 
staggered, in either a cell-centred or node-based 
arrangement. The most common FVTD 
implementations consider cell-centred collocated 
configurations, i.e. with both the unknown field 
vectors  and iH  placed in the barycentre of 
the cell i . The auxiliary values kE  and kH  
required at the cell boundaries are 
correspondingly located in the face centres, as 
suggested in Fig. 1(a). Inside this framework, 
several scheme variations exist, depending on 
how the integrations are carried out. A commonly 
employed scheme is described in the following. 

iE

 
A critical aspect of the FVTD algorithm lies in 
the accurate determination of the field vectors on 
the face centres based on barycentric field values. 
For this purpose, the monotonic upwind scheme 
for conservation laws (MUSCL) [6] uses a linear 
function constructed from the barycentre field 
values and the field gradients estimated in the 
barycentre. This can be written as 
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where the vector  represents the vector from 
the barycentre to the face centre , as illustrated in 
Fig. 1(b) (where for clarity, only the magnetic 
field for one face is represented). The numerical 
evaluation of the gradient can be obtained from 

field values in the cells adjacent to the considered 
cell, as described in detail in [4]. 
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Fig. 1. Two-dimensional representation of a FVTD 
cell. (a) Geometry and location of the unknowns, (b) 
MUSCL for the face-centre field vectors. (c) Two-
sided computation of the face-centre field vectors. (d) 
Flux-splitting algorithm illustrating the interaction of 
cell i with neighbour cells. 
 
If the triangular face that forms the boundary 
between the two tetrahedral cells i  and j  is 
considered (as shown in Fig. 1(c)), there are 
obviously two distinct approximations of the face 
centre fields that can be obtained, depending on 
the side where the upwind scheme (MUSCL) is 
applied. The resulting field vectors are denoted as 

 and ,ik ikE H ,jk jkE H , and they provide the basis 
to compute the fluxes that describe the 
interaction between adjacent cells. A robust 
implementation of this interaction is provided by 
the flux-splitting algorithm, which is based on 
characteristic theory and separates the fluxes 
through the face k into the outgoing and 
incoming contributions [3]  
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with the following notation and interpretation 
(Fig. 1(d)) 
• The outgoing fluxes are denoted as H

ik

+

Φ  and 
E
ik

+

Φ . The subscript i indicates that they are 
computed on the basis of ,ik ikH E , i.e. that 
they originate from the considered cell i. 

• The incoming fluxes are denoted as H
jk

−

Φ  and 
E
jk

−

Φ . The subscript j indicates that they are 
computed on the basis of ,jk jkH E , i.e. that 
they originate from the adjacent cell j. 

The actual principle of the flux splitting relies on 
the separation of waves propagating along the 
direction of the normal vector kn  according to 
the sign of their eigenvalues. An explicit matrix 
formulation of the split fluxes can be found, e.g. 
in [4],[7]. The final semi-discrete equation for the 
field vector in cell i can be expressed in compact 
notation as 
 

ik jk
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where
k

 are 6×6 matrices that describe 
the separated fluxes (+ for outgoing flux, and – 
for incoming flux) for the face k with normal 
vector . 

A + −n /( )

k
n

 
In the FVTD framework, the flux-splitting 
algorithm can be exploited to implement 
conveniently the following features: 

• Port implementation: The excitation of an 
active port can be added to the incoming 
fluxes 

jk
−Φ  on the faces that build the port. The 

tangential field distribution of the excited 
mode needs to be known. Furthermore, the 
split fluxes can be uniquely related to the 
incident and reflected waves, allowing a 
convenient S-parameter extraction [7]. 

• Absorbing boundary condition (ABC): The 
Silver-Müller ABC is implemented by setting 
incoming fluxes at the truncating boundary to 
zero, i.e. 

jk
− = 0Φ . This first-order ABC is 

computationally extremely inexpensive, 
however only exact for normal incidence. 

 
The combination of MUSCL with the flux-
splitting algorithm yields a solution of the semi-
discrete formulation (8) with second-order 
accuracy in space. To obtain an explicit 
formulation, a time-discretization is introduced. 
This can be achieved using standard iteration 
techniques such as, e.g. the second-order Runge-
Kutta method. The implementation presented 
here makes use of a second-order Lax-Wendroff 
predictor-corrector time discretization [4]. 
 

III. STRENGTHS AND LIMITATIONS 
 
Since its introduction as electromagnetic 
simulation technique, the FVTD method has been 
traditionally applied in scattering problems (e.g. 
[3],[8]) and increasingly thereafter in antenna and 
microwave engineering problems (e.g. [9-12]). 
This has revealed the strengths of this method, 
but also – as for any numerical method – 
disclosed some limitations. 

 
A. Strengths 

 
The properties of the FVTD method that make it 
attractive for a broad range of electromagnetic 
problems come from the explicit time-domain 
treatment and from the geometrical flexibility of 
the implementation in unstructured polyhedral 
meshes. In fact, it is the combination of these two 
features that make the specificity of FVTD and 
motivate research efforts on the method. 
 
For numerous engineering applications, time-
domain analysis is attractive, as it is particularly 
suited to the modelling of broadband and 
transient phenomena. Further, an explicit time-
marching algorithm translates into a linear 
memory increase with the number of cells, and is 
amenable to be parallelized [13]. This appears 
promising for the solution of problems with an 
increasing size and/or level of details resolution. 
 
In the perspective of dealing with the growing 
complexity of electromagnetic problems, the 
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conformal treatment of boundaries in the FVTD 
method is a powerful characteristic. As 
mentioned, this geometrical flexibility is intrinsic 
to the technique and is a direct benefit of the 
implementation in an unstructured mesh. The 
most commonly used irregular mesh types are 
tetrahedral and hexahedral. In particular, a space 
discretization consisting of tetrahedrons is very 
convenient since meshing tools capable of 
producing high-quality tetrahedral meshes are 
readily available. Such a volume mesh is built on 
a triangulation of the boundary surfaces and 
allows discretizing curved or slanted surfaces 
accurately, while keeping the number of 
necessary triangles to a minimum.  
 
In addition, strong variations of cell size (i.e. also 
of volumes) can be introduced in the mesh to 
resolve fine details embedded in larger structures. 
The geometrical resolution of the details can then 
be achieved by creating locally, i.e. where 
needed, a fine mesh adapted to the feature size. 
This inhomogeneity of cell size, which is 
advantageous for multi-scale problems, does not 
alter the standard connectivity in the tetrahedral 
mesh (i.e. each cell has four neighbours), and 
therefore does not require modification of the 
FVTD algorithm. Similarly, using an 
inhomogeneous spatial discretization benefits the 
treatment of geometries where variations of 
material properties are present, since the domains 
with denser media can be discretized with a finer 
mesh. 
 
The conformal treatment of boundaries can also 
be exploited to shape the computational domain 
truncation for open-space radiation and scattering 
problems. The benefit can be expressed in two 
ways. Firstly, the outer boundary can be shaped 
so that radiated waves will impinge onto the 
ABC at near-normal incidence. For an antenna 
problem, a spherical boundary around the device 
allows nearly matching the shape of the phase 
fronts, provided a sufficient large radius is used. 
In practice, this allows reducing reflection 
coefficients down to -40 or -50 dB for a simple 
Silver-Müller ABC. Secondly and more 
generally, using a spherical or ellipsoidal 

truncating boundary permits in many cases a 
reduction of the total volume of the 
computational domain, thus decreasing the 
computational cost (as illustrated below in Sec. 
IV.C). This is best used in conjunction with 
finite-volume absorbers of the perfectly-matched 
layers (PML) type, as demonstrated for a radial 
configuration in [14]. 
 
B. Limitations 

 
Paradoxically, the limitations of the FVTD 
method are, in fact, also a consequence of the 
unstructured mesh. They concern mainly two 
relevant aspects: The computational efficiency 
and the spatial convergence. 
 
Considering the FVTD formulation (8), it 
appears clearly that the update of a FVTD 
tetrahedral cell is computationally costlier in 
terms of CPU time and memory compared to the 
update of a FDTD Yee cell. Firstly, as each 
tetrahedral cell is different from its neighbours, 
more geometrical information and connectivity 
need to be stored in the memory (even in the 
form of aggregated coefficients). Secondly, the 
unstructured nature of the mesh introduces a 
certain randomness of memory access, and 
therefore decreases its efficiency. And thirdly, 
more operations are needed to update a single 
FVTD cell than a Yee cell. Therefore, the FVTD 
method becomes interesting for the simulation of 
devices, where the unstructured mesh allows an 
accurate modelling of the geometry using a 
distinctly smaller number of cells than a regular 
Cartesian grid would require. This condition is 
very likely to be fulfilled for the simulation of 
multi-scale structures. 
 
A second limitation of the method is related to 
the low-order of the approximation in the FVTD 
cell. As expressed in (6) the field values on the 
face centres are retrieved on the basis of 
barycentre values extrapolated with a linear 
function. The low order is revealed by mesh-
induced noise and numerical dissipation [15] that 
set requirements on the mesh for a desired 
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simulation accuracy. These requirements can be 
summarized as follows: 

• Mesh fineness: The discretization at the 
highest frequency of interest is required to be a 
small fraction of the wavelength in the 
medium considered. For a coarse 
discretization of λ/10, numerical dissipation 
will be observed in the results and might 
compromise the accuracy of the results, 
especially for resonant structures. 

• Mesh quality: The quality of a mesh can be 
quantified by considering, e.g. the 
longest/shortest edge ratio for each 
tetrahedron, or its volume to surface ratio. 
Ideal tetrahedrons are close to regular, 
whereas flat or skewed tetrahedrons introduce 
computational errors which are manifested as 
numerical noise. In extreme cases, even the 
stability of the computation might be 
compromised. 

• Mesh inhomogeneity: In a tetrahedral mesh, 
the transition from a finely meshed region 
(e.g. feed of an antenna) to a coarsely meshed 
region (e.g. free-space) can be realized over a 
short distance, while remaining smooth (see 
e.g. [11]). A fast transition allows lowering the 
total number of cells. However, a too fast 
transition is bound to reduce the quality of the 
mesh and therefore the accuracy of the 
simulation. 

Those empirical requirements on the mesh 
indicate a compromise between the mesh quality 
and fineness on one side, and the accuracy of the 
results on the other side.  
 
C. Future Challenges 
 
The FVTD method has proven to be very 
attractive for solving complex and multi-scale 
problems. More generally, a growing need for 
conformal time-domain computations can be 
expected for the design and analysis of 
increasingly complex electromagnetic devices. 
Therefore, the most important challenges will 
involve addressing the mentioned limitations of 
the method. 

 
The first aspect regards the increase of the spatial 
convergence. Towards this end, higher-order 
FVTD schemes have been proposed [10],[16]. 
However, these implementations are based on 
spatially extended field interpolations around 
each tetrahedron, and therefore, might not enable 
an accurate treatment of boundaries. Higher-
order methods that are based on a higher-order 
treatment in cell, such as the Discontinuous 
Galerkin (DG) method (e.g., [17],[18]) appear 
more promising, and significant efforts have been 
and are invested in this direction. It must be 
further noted that many aspects of the discussion 
presented in this paper are shared by the different 
conformal time-domain methods. 
 
The second aspect concerns the computational 
efficiency of conformal time-domain algorithms. 
Towards an enhancement of the performance, a 
multi-domain analysis appears essential. A step 
in this direction has been achieved with the 
development of local time-stepping algorithms 
[19][20]. Further, the strategy of using a locally 
implicit or a hybrid explicit/implicit scheme [21] 
can further relax the time-step condition for 
stability when tiny cells are present in a refined 
mesh. Alternatively, for the class of problems 
that include multiple objects, an hybridization 
with integral equations has also been proposed 
[22]. In the frame-work of higher-order methods, 
a multi-domain multi-order strategy provides an 
attractive solution [23]. 
 

IV. APPLICATION EXAMPLES: DRAs 
 
To illustrate the application of the FVTD method, 
simulations of probe-fed DRAs of various shapes 
and configurations are shown in the following. 
DRAs consist of a dielectric resonator placed on 
a ground plane in an open environment. The 
radiation Q factor of those devices in their low-
order resonant modes is low and therefore, they 
can be used as radiators as first demonstrated by 
Long et al. in 1983 [24]. Compared to microstrip 
antennas of comparable complexity, DRAs are 
characterized by a small size, a high efficiency 
and a wide bandwidth of operation. In particular, 
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wide bandwidths can be achieved by combining 
several modes with similar radiation 
characteristics, at slightly offset resonance 
frequencies. Optimizing the properties of a DRA 
can be achieved by looking into the dielectric 
resonator shape, into the feed design, and/or into 
the materials involved. In the following, the first 
two examples concern shape variations around a 
rectangular shape. The emphasis of the 
discussion is placed on the simulation of the 
devices with the FVTD method. The third 
example considers mutual coupling of DRAs. 
 
A. Two-Step DRA 
 
The first example considers a two-step dielectric 
structure fed by a simple coaxial probe according 
to the configuration shown in Fig. 2. The design 
concept for this antenna has been described 
previously in [25]. The two-step dielectric 
resonator can be realized by joining two slabs 
made of Rogers TMM® 10i laminate, with a 
relative permittivity εr = 9.8. The taller of the two 
slabs has dimensions l1×w1×h1 = 17×3.5×25 mm3, 
the smaller slab is l2×w2×h2 = 10×3.5×20 mm3. 
The probe length (9.6 mm) is chosen for best 
matching. 
 

εr = 9.8

 
Fig. 2. Geometry of the probe-fed two-step DRA. 
Left: simulation model, right: fabricated device. 
 
The surface discretization of the device is 
illustrated in Fig. 3. Three different scales of 
discretization are shown in the picture. First the 
ground plane, which is in the air, is discretized 
with a fraction of the shortest free-space 
wavelength of interest λ0. This fraction is 
typically smaller than 1/10. For example, as 

depicted in the Fig. 3, a triangulation with λ0/15 
allows achieving a very good spatial 
convergence. A second scale of discretization 
consists in the dielectric resonator itself. Inside 
the dielectric, the wavelength is shortened by a 
factor of rε  and consequently requires a 
correspondingly finer discretization (in the 
present case by a factor around three). Finally, 
near the feeding coax, the discretization is 
determined by the resolution of the details. The 
tetrahedral (volume) mesh is constructed based 
on this triangular mesh.  
 
Coupled to this inhomogeneous spatial 
discretization, an inhomogeneity is introduced in 
the time discretization through local time steps 
(as described in [19]) with a maximal ratio 

min max  equal to 1/16. This increases 
significantly the efficiency of the computation, as 
the larger cells (in free-space) are updated 16 
times less often than the small cells (around the 
feed). Local time-stepping algorithms are 
particularly advantageous for problems such as 
the present one, where the smaller cells in the 
mesh represents only a few percents of the total 
number of cells. 

/t tΔ Δ

 
Figure 4 illustrates the return loss of the 
considered DRA, demonstrating a good 
agreement between the FVTD simulations and 
the measurements. Similarly, simulated and 
measured radiation patterns in the operation band 
are in good agreement, as shown for three 
frequencies in Fig. 5. 
 

∼λ0/15

∼λε/15

∼λ0/50
 

Fig. 3. Surface mesh of the two-step DRA, showing 
the different scales of the discretization. The 
tetrahedral mesh is built on the basis of this triangular 
surface mesh. 
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Fig. 4. Return loss of the two-step DRA showing an 
impedance bandwidth of 47%. A good agreement 
between simulation and measurement is achieved. 
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Fig. 5. Radiation patterns of the DRA at 3 
frequencies. Left: E-plane, right: H-plane. 

 
B. Evolutions of the DRA Shapes 
 
The principle of operation of the two-step DRA 
is based on the excitation of three modes with 
similar characteristics. Conceptually, each of the 

modes can be attributed to a particular resonance 
in one of the slabs, although coupling to the 
second slab clearly affects the field distribution. 
Starting from this stepped structure, a semi-
trapezoidal shape as shown in Fig. 6 can be 
interpreted as a continuous evolution from a 
multiple step DRA. This structure has been 
presented in [26], where the full design concept 
and the dimensions can be found. The return loss 
of the device, here simulated with FVTD, is 
compared in Fig. 7 to the measured data from 
[26] showing a reasonable agreement. A 
degradation is observed in the higher frequency 
range. It must be emphasized that fabrication and 
material tolerances are also introducing 
uncertainty in the comparison. 
 

 
Fig. 6. Geometry of the semi-trapezoidal DRA. Left: 
simulation model, right: fabricated device. 
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Fig. 7. Return loss of the semi-trapezoidal DRA, 
showing a measured 62 % impedance bandwidth. 
 
The asymmetry in the design of the semi-
trapezoidal DRA allows optimizing the 
impedance bandwidth. However, this asymmetry 
also affects the radiation pattern by skewing the 
broadside beam. Therefore, a further evolution of 
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the design symmetrises the structure, leading to 
the pyramidal DRA shown in Fig. 8 [27]. Again, 
the FVTD simulation of the device provides a 
return loss in good agreement with the measured 
data (Fig. 9). Compared to the asymmetric 
design, the pyramidal DRA is characterized by a 
slightly reduced bandwidth (48%), however with 
nicely behaved broadside patterns and 
polarization purity better than -20 dB. 
 

 
Fig. 8. Geometry of the pyramidal DRA. Left: 
simulation model, right: fabricated device. 
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Fig. 9. Return loss of the semi-trapezoidal DRA, 
showing a measured 48% impedance bandwidth. 
 
C. Mutual Coupling between Cylindrical DRAs 
 
The last example considers the coupling between 
two simple probe-fed cylindrical DRAs on a 
common ground plane. The configuration is 
taken from [28]. In the present case, the 
computational domain takes the shape of an 
oblate ellipsoid in order to minimize the size of 
the computational domain while still including 
the full ground plane. A conformal PML is used 
as a finite-volume absorber to provide an 
accurate reflection-free domain truncation. The 
results plotted in Fig. 11 represent the S-
parameters for the H-plane configuration of the 

two DRAs, with an inter-element spacing of 
70 mm. Again, a very good agreement is 
observed between the FVTD simulation and the 
measurement. In this case, the transmission 
coefficients from the active antenna #1 to the 
passive antenna #2 is computed using the S-
parameter extraction introduced in [7]. 
 

 
Fig. 10. Cut through the FVTD computational domain 
for the simulation of the H-plane coupling between 
two cylindrical DRA on a common ground plane. The 
inset show the geometry of a single DRA element. 
 

 
Fig. 11. Comparison of the measured and simulated 
S-parameters for the configuration of two DRAs 
shown in Fig. 10. S11: Return loss. S21: Transmission 
coefficient. 
 

VI. CONCLUSION 
 

Time-domain methods applied in conformal 
meshes such as the FVTD or the DG-TD 
methods can be expected to take an increasing 
role in the future of EM simulations, considering 
the miniaturization and growing complexity of 
devices. Multi-scale multi-domain schemes 
provide a promising approach to increase the 
efficiency and accuracy of this class of methods. 
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