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Abstract— Meshless methods are a promising field of numerical
methods recently introduced to computational electromagnetics.
The potential of conformal and multi-scale modeling and the pos-
sibility of dynamic grid refinements are very attractive features
that appear more naturally in meshless methods than in classical
methods. The Radial Point Interpolation Method (RPIM) uses
radial basis functions for the approximation of spatial derivatives.
In this publication an eigenvalue solver is introduced for RPIM
in electromagnetics. Eigenmodes are calculated on the example
of a cylindrical resonant cavity. It is demonstrated that the
computed resonance frequencies converge to the analytical values
for increasingly fine spatial discretization. The computation of
eigenmodes is an important tool to support research on a time-
domain implementation of RPIM. It allows a characterization of
the method’s accuracy and to investigate stability issues caused
by the possible occurrence of non-physical solutions.

Index Terms— Meshless Methods, Eigenvalues and eigenfunc-
tions, Radial Basis Functions, Radial Point Interpolation Method.

I. INTRODUCTION

Meshless Methods for Computational Electromagnetics
(CEM) gained attention recently as a new versatile tech-
nique for solving the Maxwell equations [1]. The underlying
principle avoids an explicit mesh structure for the numerical
solution of the differential equations. Instead a set of node
locations is selected depending on the physical model at hand.
The flexibility in the node distribution allows for conformal
and multi-scale modeling. The class of meshless methods is
established in other fields of computational physics, e.g. in
fluid dynamics or computational mechanics [2]. In CEM in
the time domain, recent approaches include Smooth Particle
Hydrodynamics for Electromagnetics (SPEM) [3], [4] and the
Radial Point Interpolation Time-Domain (RPITD) Method [5],
[6]. All these approaches have in common that a node-based
interpolation scheme describes the connectivity between the
nodes of the computational domain.

The method presented in this publication is a domain
discretization collocation method with interpolations based on
radial basis functions. It has been introduced as the Kansa
RBF method [7], or the Radial Point Interpolation Method
(RPIM) [2]. The primary objective of the work of the authors
focuses on a time-domain implementation of the RPIM method
for electromagnetics. As a matter of fact, the advantages
over classical methods, such as geometrical versatility and

Fig. 1. Support domain of a given node ×, showing the area of
influence that only includes nodes within radius ds. The average node
distance dc is used for normalization of radial basis functions.

the dynamic grid adaptation will be best expressed in time-
domain applications to simulate transient and possibly multi-
physics effects. In this scope an eigenvalue analysis presents a
crucial tool to examine accuracy and investigate the presence
of spurious modes which eventually can lead to instabilities
in the time iteration. Furthermore, eigenmode solvers are an
essential tool to characterize arbitrary shaped ports.

The following two sections firstly introduce the interpolation
method used in RPIM and secondly their implementation for
an eigenvalue problem. Subsequently the approach is analyzed
in terms of accuracy and convergence in the example of a two-
dimensional cylindrical resonator.

II. RADIAL POINT INTERPOLATION

The interpolation scheme used in RPIM is based on local
radial basis functions (RBFs). This type of basis functions
provides excellent interpolation accuracy and an approxima-
tion of the spatial derivations can be obtained relatively simply.
Only field values in the vicinity of each node inside a local
support domain are considered for interpolation, leading to
fast local calculations. Fig. 1 depicts the local support domain
with radius ds. The interpolation of the spatial derivatives are
used to obtain the curl operators of the Maxwell equations in
differential form.

The used method is thoroughly described in [2] and there-
fore only briefly summarized here. A field component u(x) at
position x is interpolated as

〈u(x)〉 =
N∑
n=1

anrn(x) +
M∑
m=1

bmpm(x) = r(x)Ta + pT (x)b.

(1)
The radial basis functions

rn(x) = exp
(
−αc
|xn − x|2

d2
c

)
(2)
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are of Gaussian type with shape parameter αc. The nor-
malization factor dc is the average node distance within the
support domain and can be approximated with knowledge of
the support domain area As and the number of neighbors
(nAs)

dc =
√
As√

nAs − 1
. (3)

The monomial basis functions pm(x) in (1) are of the
following types:

zero order: pT = [ ] (M = 0) (4a)

first order: pT = [1, xm − x, ym − y] (M = 3). (4b)

The interpolation parameters a,b are calculated as follows.
The vector form of (1) is used to express the interpolated field
values for all considered neighbors Us = (u1, u2, ..., un)T in
the matrix form(

Us

0

)
=
(

R0 Pm

PT
m 0

)(
a
b

)
= G

(
a
b

)
(5)

including the constraint condition Pma = 0. Thus, the
interpolation parameters can be calculated by inverting the
local matrix G (

a
b

)
= G−1

(
Us

0

)
(6)

and shape function Ψ is subsequently obtained as

〈u(x)〉 = (rT (x),pT (x))
(

a
b

)
=

[
rT (x),pT (x)

]
G−1

(
Us

0

)
= Ψ(x)Us. (7)

Similarly, the approximation of the spatial derivations along
κ = x, y can be expressed as

〈∂κu(x)〉 =
[
∂κrT (x), ∂κpT (x)

]
G−1

(
Us

0

)
= ∂κΨ(x)Us.

(8)
The shape parameter αc in (2) influences the condition number
of matrix G and the interpolation accuracy. A suitable value
is a balance between high accuracy and bad matrix condition
number.

In the practical implementation, a staggered node distribu-
tion is well adapted to store E and H field components and
the E and H shape functions have to be calculated separately.
The spatial derivatives of the shape functions ∂κΨ can be
expressed as follows: For the E node i the value of the shape
function at each neighbor Nei

within the support domain at
position x(Nei) is expressed as ∂κΨeiNei

. Vice versa, the
shape function for H node j at neighbor positions x(Nhj

)
is expressed as ∂κΨhjNhj

.

III. EIGENVALUE SOLVER

The discretized conservative and source-free Maxwell equa-
tions in the frequency domain can be written as

jωM
(

E
H

)
= L

(
E
H

)
(9)

with a diagonal material mass matrix M = diag(ε, µ) and

the stiffness matrix L =
(

0 ∇×
−∇× 0

)
containing the curl

operators. The vectors E and H contain the field components
for all nodes of the electric and magnetic field. The eigenvalues
correspond to the resonance frequencies ω = −jλ of the
resonator. The eigenvectors represent the field distribution of
each mode.

In a two-dimensional TM case with the z-independent field
components Hx, Hy and Ez , the problem reduces to the
generalized eigenvalue problem

λM

Ez

Hx

Hy

 = L

Ez

Hx

Hy

 . (10)

The vectors Ez , Hx and Hy are vectors of the length of
number of electric and magnetic nodes, respectively. The
differential operator matrix in that case contains the spatial
derivations in x- and y- direction:

L =

 0 −∂yLe ∂xLe
∂yLh 0 0
−∂xLh 0 0

 . (11)

The real valued matrices ∂xLe, ∂yLe, ∂xLh, ∂yLh are ob-
tained by inserting the derivatives of the shape functions (8).
∂κLe and ∂κLh contain entries for E, respectively H nodes in
rows i, j at the column of their neighbors Nei,hj

:

∂κLe(i, ki) = ∂κΨeiNei
(12)

and
∂κLh(j, kj) = ∂κΨhjNhj

. (13)

These matrices are of sparse nature with the number of
neighbors Ne,h entries per row.

Boundary conditions for the TM modes are perfect electric
conductors (PEC). This Dirichlet boundary is implemented by
placing zero-valued E nodes at the boundary.

IV. NUMERICAL ANALYSIS

A 2D cavity with circular profile was chosen to demonstrate
the validity of our meshless approach. The resonator corre-
sponds to a cylindrical structure with infinite extension in the
axial direction. This example was chosen as it utilizes of the
conformal modeling abilities of the method and furthermore is
a well-known problem with analytical solutions. The TM case
is considered with the magnetic field in the cross section and
the electric field perpendicular to it. The resonance frequencies
of this two dimensional problem are [8]

fnm =
(pnm

r

) c

2π
. (14)

with the factor pnm being the mth root of the Bessel functions
of the first kind Jn(x) = 0 and r the radius of the cavity.

A. Model
The physical model of the cylindrical cavity with radius

150 mm is depicted in Fig. 2. The vacuum cavity is enclosed
by perfectly electric conducting walls. A set of nodes where



Fig. 2. Depiction of the node arrangement of the cylindrical cavity.

the electric (E) field component is stored is distributed in
the cavity volume. The staggered dual magnetic (H) grid is
generated by applying a Voronoi tessellation [9] on the E nodes
and placing the H nodes on the edge centers of the resulting
polygons. In the case of a structured E node distribution, this
would lead to a node distribution comparable to a 2D Yee
grid.

B. Simulation

For each node the support domain first needs to be deter-
mined. It is chosen here as a circle with radius of ds = αsdc
with αs = 1.1. This results in an average of 5.7 neighbors per
node. A higher number of neighbors increases the accuracy,
though at the cost of increased computational complexity.
Typical interpolation parameters in (2), (4) are αc = 0.2 and
M = 3. The accuracy of the boundary is influenced by the
choice of the shape parameter and was set accordingly. The
values of the shape functions ∂κΨe, h can now be calculated
from (8). This allows to assemble the stiffness matrix L (11)
and therefore to solve the eigenvalue problem (10). That is
achieved in this publication using a full matrix solver [10]
in order to guarantee the computation of all eigenvalues and
the identification of potential spurious modes. If interested in
only a small number of eigenvalues, a sparse iterative solver
with a sound initial value might be chosen for a more efficient
implementation.

C. Results

For a node distance of ∆x = 15 mm, the distribution of
eigenvalues in the complex plane is shown in Fig. 3. The
imaginary axis represents the angular frequency jω, and the
analytical solutions (14) are printed in comparison. For low
resonance frequencies, i.e. high resolutions in the order of
λ/25 the eigenvalues match the theoretical value. As frequency
grows, the accuracy deteriorates and the eigenvalues are shifted
compared to analytical resonance frequencies. Nevertheless
their eigenvectors still exhibit symmetrical physical modes.

The electric and magnetic field patterns for a selection of
five eigenmodes are presented in Fig. 4 by extracting the
field components from the eigenvectors. The field patterns
perfectly represent the expected modes. For all modes which
allow orthogonal field representations, e.g. TM11, degenerate

Fig. 3. Eigenmode distribution λ for a node distance of ∆x =
15 mm. The stiffness matrix L is of size (1989× 1989).

orthogonal solutions exist, i.e. with a field pattern rotated by
90◦.

For the represented eigenmodes, a convergence study of the
resonant frequencies has been conducted. The discretization
of the model was made gradually finer. Discretizations were
chosen between ∆x = 25 mm and ∆x = 7 mm. These node
distances correspond to a specific discretization for each mode
depending on the resonance frequency. Fig. 5 compares the
relative error of the analytical resonant frequencies with the
computed eigenvalues. The modes show a good convergence
and the errors are much smaller than 0.01%. Error sources
are firstly a redshift caused by a phase error in the bulk
of the computational domain which becomes significant for
resolutions coarser than λ/10. Secondly, the circular boundary
is approximated by a finite number of nodes, and therefore
the effective radius of the resulting polygon is smaller than
the corresponding circle, which slightly reduces the resonant
frequency.

V. CONCLUSION

A meshless eigenvalue solver for the Radial Point Inter-
polation Method has been implemented and validated on the
example of a cylindrical cavity. The field patterns match the
physical modes and the resonance frequencies converge with
higher resolutions. When solving large problems, using sparse
eigensolvers will improve the speed of the algorithm.

The implementation of eigenvalue computation is an essen-
tial tool in the development of meshless methods for CEM.
In the focus of time-domain simulations, eigenvalues are
firstly important to determine the modes in arbitrary shaped
ports. Furthermore the eigenmode computations provide an
invaluable insight on the properties of the spatial interpo-
lation properties of radial basis functions. The investigation
on the possible existence of spurious modes, as well as the
understanding of the influence of interpolation parameters on
stability and accuracy can be performed more rigorously than
in time-domain simulations.



(a) E field for TM01 (b) H field for TM01

(c) E field for TM11 (d) H field for TM11

(e) E field for TM21 (f) H field for TM21

(g) E field for TM02 (h) H field for TM02

(i) E field for TM12 (j) H field for TM12

Fig. 4. A selection of five eigenmodes of the resonant cyclical cavity
with radius r = 150 mm.

Fig. 5. Convergence study for the error of the eigenvalues of
the modes shown in Fig. 4 compared with the analytical resonant
frequencies.
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