
Simulation of Corrugated Coaxial Cables using the
Meshless Radial Point Interpolation Time-Domain

Method
Christoph Böcklin #, Thomas Kaufmann #, Johannes Hoffmann #, Christophe Fumeaux ∗, Rüdiger Vahldieck #

# Laboratory for Electromagnetic Fields and Microwave Electronics (IFH),
Member of SEREC (Swiss Electromagnetics Research & Engineering Centre),

ETH Zurich, 8092 Zurich, Switzerland
boecklic@ee.ethz.ch

∗ School of Electrical & Electronic Engineering, The University of Adelaide
Adelaide, South Australia 5005

Abstract—Meshless numerical simulation methods are gaining
attention in different research fields. The ability for conformal
and multi-scale modelling as well as the potential for a dynamic
node adaptation make them interesting for many applications.
The meshless Radial Point Interpolation Method (RPIM) in
Time-Domain is proposed here as a versatile simulation technique
for electromagnetic problems. In this framework, a conformal
boundary treatment is described and validated in a 2D cylindri-
cally symmetric arrangement. These conformal boundaries can
be applied for example to simulate the influence of production
tolerances or manufacturing properties in corrugated coaxial
copper cables. Reflections arising from ripples of a corrugated
copper cable are analyzed in particular here and the simulation
results exhibit a perfectly linear dependence in a log-log plot be-
tween the reflected energy and the extent of the corrugation. The
obtained results are validated successfully through comparison
with a Finite-Element solution of the problem. Finally, the phase
and amplitude variations of a sinusoidal signal propagating in
the corrugated cable are characterized.

I. INTRODUCTION

Meshless methods have become increasingly popular in
many engineering specialties over the past years [1]. They
might grow to become a viable alternative to well-established
simulation methods like the Finite-Element Method (FEM) or
the Finite-Difference Time-Domain (FDTD) method. Meshless
methods appear attractive as they offer a flexible treatment of
geometries, but do not require a fixed mesh topology and can
be applied in the framework of a simple explicit time-domain
iteration. However, at present, the class of meshless methods
poses many challenges as novel technique for the simulation
of electromagnetic problems [2], [3]. The Radial Point In-
terpolation Method (RPIM) [4], [5] is a promising candidate
among the different types of meshless methods for simulating
such problems. RPIM can be applied to a staggered set of
arbitrarily placed E- and H-nodes without requiring explicit
connectivity among them. Radial basis functions (RBF) are
used to interpolate the field values in between these nodes.

The possibility of placing the nodes at arbitrary locations
allows for multi-scale simulations, conformal boundary treat-

ment and in principle dynamic adaptation of the node arrange-
ment. This flexibility as well as the possible application of
the method for various partial differential equations make the
RPIM a promising alternative to classical numerical methods
for transient multi-physics applications, e.g. in nanotechnology
[6], [7], [8].

This paper describes a 2D implementation of the RPIM
method for cylindrically symmetric models and demonstrates
its application to a practical transmission line problem. Cor-
rugated copper cables are flexible air dielectric coaxial cables.
They are widely used for high power applications, for example
as connection cables for mobile base stations or terrestrial
antennas. The corrugations facilitates physical handling, e.g.
bending. However, the periodic variations of the profile also
cause reflections of waves propagating in the cable. The
computation of reflection in corrugated cables is shown here
as illustration of one application in the field of electromag-
netic compatibility (EMC) of the attractive properties of the
meshless RPIM.

II. THEORY

A. Meshless Methods

Meshless methods differ from FEM or FDTD in that they
don’t need an explicit mesh topology or a regular grid to
discretize the problem domain. They rather use a set of arbi-
trarily placed nodes and do not require an explicit connectivity
among them. Around each node a support domain with radius
dn is defined (see Fig. 1), containing a certain number of
neighboring nodes. The vector field value of a node n is
approximated by an interpolation function constructed on the
basis of the values from the nodes in this support domain.
The size of the support domain can be in principle chosen
freely. However, an optimal size will always be a trade-off
between simulation speed, stability and numerical accuracy
of the interpolation. The numerical accuracy can be increased
through a refinement of the discretization, i.e. through a denser
node distribution in the model.
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Figure 1. Illustration of the support domain with radius dn around the node
n, with approximated field value un. Rni denotes the Euclidean distance
between node n and node i.

B. The Meshless Radial Point Interpolation Method (RPIM)

A generic function in the function space can be expressed as
a linear combination of basis functions. The RPIM ([4], [5])
uses an interpolation based on radial basis functions ri and
monomial basis functions pj [9] to approximate the function
value un of node n (see Fig. 1) at the location xn = (xn, yn):

u(xn) = un ≈ 〈un〉 =
N∑
i=1

ri(xn)ai +
M∑
j=1

pj(xn)bj

= rT (xn)a + pT (xn)b.

(1)

where ai and bj are the coefficients for the linear combination
of the basis functions, N denotes the number of nodes in
the support domain of node n and M is the number of the
monomial terms p. The vectors in (1) are defined as

aT = [a1, a2, . . . , aN ]
bT = [b1, b2, . . . , bM ]

rT (xn) = [r1(xn), r2(xn), . . . , rN (xn)]
pT (xn) = [p1(xn), p2(xn), . . . , pM (xn)].

(2)

A popular radial basis for the RPIM is the exponential Gaus-
sian

ri(xn) = exp(−c(Rni/dn)2) (3)

with Rni = ||xn − xi|| being the Euclidean distance between
node n and i. The linear monomial basis is defined as

pT (xn) = [1 x y]. (4)

In order to obtain the coefficients a and b from (1), the
following system of linear equations has to be solved for each
node n in the computational domain[

R0 P0

PT
0 0

]
︸ ︷︷ ︸

G

{
a
b

}
=
{

ue

0

}

→
{

a
b

}
= G−1

{
ue

0

} (5)

where ue is the vector for function values at the N neighboring
nodal points. The matrix R0 that multiplies the unknown
coefficient vector a, is constructed as

R0 =


r1(x1) r2(x1) . . . rN (x1)
r1(x2) r2(x2) . . . rN (x2)

...
...

...
...

r1(xN) r2(xN) . . . rN (xN)


N×N

(6)

and the matrix P0, that is applied on the unknown coefficient
vector b is

P0 =


p1(x1) p2(x1) . . . pM (x1)
p1(x2) p2(x2) . . . pM (x2)

...
...

...
...

p1(xN) p2(xN) . . . pM (xN)


N×M

. (7)

The condition PT
0 · a = 0 guarantees the uniqueness of the

solution. The interpolation can finally be written as

〈un〉 = [rT (xn) pT (xn)]G−1

{
ue

0

}
≡ Ψ(xn)ue. (8)

This can be interpreted as a weighted sum of the field values
at neighboring nodes, where the weights are determined by
the shape function Ψ(xn). The approximation of the spatial
derivative of the field values can be found by taking the
derivative of the basis functions

〈∂un〉 = [∂rT (xn) ∂pT (xn)]G−1

{
ue

0

}
= ∂Ψ(xn)ue.

(9)

C. Cylindrically Symmetric Maxwell’s Equations for TM-
Mode

The RPIM makes use of a discretized version of the
Maxwell’s equations in differential form. Although corru-
gated copper cables usually have helical corrugations, they
are assumed here to be rotationally symmetric along the
cable axis. This assumption reduces the three dimensional
problem to two dimensions, as only a radial plane has to be
simulated. Rotationally symmetric Maxwell’s equations can be
obtained by formulation in cylindrical coordinates. The spatial
discretization is obtained by using a staggered distribution of
E- and H-nodes and by replacing the field values and their
derivatives by the approximations (8) and (9):

∂tHϕ,m =
1
µ

[
Nm∑
i=1

∂rΨi · Ez,i

−
Nm∑
i=1

∂zΨi · Eρ,i

]

∂tEρ,n = −1
ε

[
Nn∑
i=1

∂zΨi ·Hϕ,i

]

∂tEz,n =
1
ε

[
1

ρ(n)

Nn∑
i=1

Ψi ·Hϕ,i

+
Nn∑
i=1

∂rΨi ·Hϕ,i

]
.

(10)

Discretizing (10) in time, the update equations for the RPIM
can be obtained by adopting a leap-frog time-stepping scheme
for the temporal derivative. To assure a stable simulation,
a stability criterion similar to the Courant-Friedrichs-Levy
(CFL) limit in FDTD is used, which depends on the shortest
distance between any two nodes:

∆t ≤ min
i

dmin,i

c
. (11)
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D. Conformal Boundaries

A concept for the treatment of conformal boundaries in
RPIM is introduced here. A material boundary of the model
is not only characterized by its position but also by a nor-
mal vector ~n, thus giving additional geometrical information
required to model arbitrary shapes. The radially symmetric
coaxial cable to be simulated has metal on both, the top and
the bottom, which is assumed to be a perfect electric conductor
(PEC), i.e. with the tangential component of the E-field at the
boundary equal to zero (see Fig. 2).

d

~Ei
′

~Ei

~n

.

Figure 2. Field value of an E-node and its image at an arbitrarily oriented
PEC boundary.

One way to enforce this condition is to place additional
nodes outside of the model [10]. The positions of the addi-
tional PEC-nodes are obtained by mirroring the E-nodes that
are closest to the boundary at the PEC. The field values of
these added nodes are calculated in such a way, that averaging
the electric field values of a node and its image results in a
zero tangential field component (see Fig. 2). This condition
can be expressed as

~E′i = − ~Ei + 2(~n · ~Ei)~n. (12)

where the values E′i in the mirror nodes are computed based
on the values Ei of the E-nodes at the current time step.

III. SIMULATION SETUP

A. Models

Figure 3 shows the models of the plain coaxial cable (Fig.
3 a)) and a cable with a corrugated part (b). The dimensions
of the model are Douter = 14.28 cm and dinner = 7.14 cm,
respectively. These dimensions are close to those of com-
mercially available high-power cables. The corrugations are
assumed to be of a sinusoidal form with an amplitude varied
between 0.0002% and 4% of the thickness of the dielectric.
The total length of the corrugations is lC = 14.28 cm and
include 4.5 sinusoidal periods. These corrugations cause a part
of the energy of an incoming wave to be reflected. The model

dielectric (vacuum)
(µ0, ε0)

coaxial line
(PEC)

−z

ρ

ϕ

a)

D
o
u
te

r

d
in

n
e
r

corrugations

A

dA lC
b)

Figure 3. a) Plain and b) corrugated coaxial cable

of a plain cable (a) provides a reference for the analysis of
the simulation data. The bulk of the computational domain
is filled by a staggered E/H grid-like node distribution with
a node spacing corresponding to λ0/28. The regular grid is
disturbed near the corrugations. The simulation parameters
are set to c = 0.6 for the gaussian basis function (3). The
radius of the support domain dn is set such that at least
Nmin = 6 are contained in a support domain. The choice of
these parameters is a trade-off between interpolation accuracy
and computational cost, and a result of best practice.

B. Excitation

The fundamental mode propagating in a coaxial cable
is a TEM mode with E- and H-field perpendicular to the
propagation direction. However, above the cut-off frequency
higher-order modes can exist, which can be excited by the
corrugations. For the mentioned cable dimensions, the cut-
off frequency for rotational symmetric modes corresponds to
4.2 GHz [11]. In order to prohibit the existence of higher-order
modes, the frequency ω of the sinusoidal harmonic excitation
Hϕ(ρ) = 1

ρa · sin(ωt+ c) is chosen to be 3 GHz, thus below
the cut-off frequency.

IV. RESULTS

A. Computation of Reflection

The reflections from the corrugations are computed by
calculating

ΓE =
Er
Ei

(13)

where Er and Ei are the reflected and incident energy flowing
through a cable cross-section A (see Fig. 3) over one period.
The plane A is placed dA = 10 cm before the start of the
corrugations. This is sufficiently far to ensure that evanescent
higher-order modes have decayed enough and do not affect
the computed energy significantly.

The energy flow integrated over one period is defined as

E =
∫ 2π

0

∫ Douter
2

dinner
2

1
T

∫ T

0

Eρ(ρ, t) ·Hϕ(ρ, t) dt︸ ︷︷ ︸
Sav

·ρdρdϕ

(14)
Eρ(ρ, t) and Hϕ(ρ, t) are the field values at time t and position
ρ in the plane A. The field distribution for the reflected wave
is obtained by subtracting the reference solution obtained in
the plain cable from the solution obtained in the corrugated
cable. The energy of the incident wave correspond to the value
obtained from the reference model. Sav is the time-averaged
Poynting vector in z direction.

Figure 4 shows the linear dependence in a log-log plot
between the reflection coefficient ΓE and the amplitude of the
sinusoidal corrugations of the cable. The calculations show
that in cables with large corrugations a considerable amount
of the incident energy is reflected. Corrugations of cables used
in practical applications such as mobile base stations extend
to as much as 4% of the thickness of the dielectric air gap.
The resulting reflection coefficient is in this case -26 dB. The
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reflection coefficient converges to zero as the corrugations
vanish. The calculations performed with an RPIM implementa-
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Figure 4. Comparison of the reflection coefficient ΓE computed with RPIM
and Comsol.

tion are compared with corresponding computations obtained
with the commercial software COMSOL RF Module, based
on the frequency-domain FEM. In the model defined in the
commercial tool, the cable is terminated with ports, which in
addition allow the direct extraction of the reflection coefficient.
The distance from the ports to the corrugation section was
varied until no influence of the higher-order mode was found,
which confirmed the validity of the chosen distance dA = 10
cm. Finally the reflected energy is computed as

ΓE = |S11|2. (15)

The comparison shown in Fig. 4 demonstrate a a very good
agreement between the two numerical methods.

B. Amplitude and Phase Analyses

Amplitude and phase analyses of the harmonic wave at 3
GHz were performed in the corrugated part of the cable. The
amplitude of the corrugations for this investigation respresents
2% of the thickness of the dielectric. Figure 5 shows the
amplitude and the phase of the standing wave pattern at
the corrugation for the total field, i.e. including incident and
reflected wave. The standing wave ratio in Section A1 (before
the corrugations) characterizes the reflection coefficient. The
maximal amplitude in section A3 (after the corrugations) is
smaller than that of the reference, which is consistent with the
fact that part of the energy is reflected.

Figure 5b) shows the phase difference between the plain
cable reference model and the corrugated model. The phase
variations in section P1 is again consistent with the standing
wave. The phase difference in section P3 is negative. This
shows a retardation caused by a slightly increased character-
istic impedance in the corrugated segment P2.

V. CONCLUSION

The meshless RPIM in Time-Domain is proposed as a ver-
satile novel technique for numerical simulation of electromag-
netic problems. A suitable boundary treatment for the RPIM
has been implemented and applied on conformal boundaries.
A model of a corrugated coaxial cable has been simulated with
a cylindrically symmetric version of the RPIM and reflections
arising from the diameter variations have been computed. The
achieved results show very good agreement with reference cal-
culations done with FEM simulations (COMSOL), validating
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Figure 5. Amplitude variation and phase difference of the test model.

the conformal boundary treatment. The RPIM is in its infancy
and more research is required, e.g. to extend the concepts for
a full 3D application, or to assure long-term stability of the
simulation (i.e. over several hundreds of periods).
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