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Abstract  — Plasmon resonances are able to produce a large 
field enhancement, which can be exploited for various purposes, 
such as biosensing or optical mixing. In this paper, the plasmon 
resonance of two stacked gold nanodisks separated by a tiny 2 nm 
gap is studied in time-domain simulations, offering the possibility 
of transient and broadband analysis. Moreover, time-domain 
simulations are amenable to extensions towards nonlinear models. 
For efficient simulations, the extremely small gap in between the 
nanodisks, as well as potential fabrication imperfections, are 
advantageously modeled with an unstructured mesh. This paper 
presents 3D simulations of the nanodisk plasmon problem using 
the finite-volume time-domain method in a tetrahedral mesh. 

1 INTRODUCTION 

Electromagnetic waves at visible frequencies incident on a 
metallic-dielectric interface are able to produce plasmon 
resonances. These collective oscillations of electrons can be 
exploited for various purposes, ranging from biosensing, over 
optical mixing to nano antennas and sensing of single 
molecules [1-4]. To support the progress in nano-fabrication 
and 3D patterning of metals at nanometer scale, the numerical 
simulation of plasmonic structures have become indispensible 
to model plasmonic phenomena. Such simulations are however 
very demanding and suitable electromagnetic field solvers 
have to be indentified. 

In this paper, the surface plasmon resonance in the gap be-
tween two stacked gold nanodisks is studied using broadband 
time-domain simulations. In the present problem, the gold 
disks [3] are placed extremely close to each other, which is 
very demanding for 3D simulations. To adequately resolve the 
tiny gap, the necessary small cell size can lead to an 
uncomfortable increase of the number of elements in 3D if a 
structured mesh is used. In contrast, an unstructured 
inhomogeneous mesh can alleviate this problem and may 
further be more appropriate to include other effects, such as 
geometric imperfections due to the fabrication process, which 
might result in non-canonical shapes, irregular edges, or rough 
surfaces, etc. [5]. The Finite-Volume Time-Domain (FVTD) 
method is chosen here as an adequate and versatile numerical 
tool for this kind of simulations [6]. The application in time 
domain (TD) makes the method compliant to the incorporation 
of non-linear effects [7]. Additionally, FVTD exhibits two 
main advantages. Firstly, FVTD is based on an explicit time-
stepping scheme and secondly, FVTD is applied in a 
tetrahedral, unstructured and potentially strongly inhomo-
geneous mesh. For efficient simulations the inhomogeneity of 
the mesh is combined with a local-time stepping scheme [8]. 

2 PROBLEM DESCRIPTION 
In order to achieve a strong plasmon resonance, two gold 

disks are stacked above each other, leaving a small gap in be-
tween them. Depending on the size of the gap and the material 
inside the gap, a strong field enhancement is expected. In the 
following, the gap distance between the two stacked gold 
nanodisks is chosen as d = 2 nm and the disks have a radius of 
r = 70 nm and a height of h = 60 nm. This geometry 
configuration is depicted in Fig. 1. The disks are illuminated 
perpendicularly to the z-axis by a plane wave covering the 
wavelength spectrum from 600 nm to 1600 nm. 

 
Fig. 1: Geometry of the nanodisks including direction and po-
larization of the impinging electromagnetic wave. 

The field enhancement observable in two different nanodisk 
configurations is investigated in this paper: 1) a canonical 
investigation of two stacked disks where the gap in between is 
filled with air, and 2) a more realistic approach, where the gap 
is filled with silicon dioxide (SiO2, εr =2.31). 

3 GOLD NANO-DISK SIMULATION 
The gold disk configuration is simulated using two different 

numerical methods, the first one applied in frequency domain 
(FD) and the second applied in time domain (TD). For the FD 
simulation, the commercially available JCMsuite software [9] 
is employed, which is based on the finite-element method. The 
TD simulations are performed using the FVTD method. 

3.1 JCMsuite 
For axis-symmetric problems, JCMsuite offers a de-

composition of the electromagnetic field in a Fourier series 
expressing the azimuthal dependence of the fields. With this 
approach, no gridding in azimuthal direction is necessary, re-
ducing this approach to a 2D representation of the 3D problem. 
It is important to note that only the geometry has to be axis-
symmetric. The excitation, as shown in Fig. 1, does not have to 
exhibit the same symmetry. Since only a 2D problem has to be 
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solved numerically, the expected computational costs are 
comparably low, however, since applied in FD, the simulation 
has to be repeated for all frequency points of interest. 
Nevertheless, if necessary, JCMsuite is also capable of solving 
a full 3D problem. In this paper, the simulation results of 
JCMsuite are used as a reference for validating the FVTD 
method results. 

3.2 FVTD 
For possibly non-symmetric structures, such as two gold 

disks placed next to each other on a substrate, or to include 
fabrication imperfections such as non-cylindrical shapes, rough 
surfaces or irregular edges, a full 3D simulation has to be per-
formed. The nature of the unstructured and inhomogeneous 
tetrahedral mesh employed in the FVTD method allows the 
resolution of fine structural details in an electrically large sys-
tem [10]. In the present case, this is very convenient to resolve 
the gap region in between the two nanodisks. The triangular 
surface mesh of the FVTD model is shown in Fig. 2, illustrat-
ing the strong mesh inhomogeneity, which is required to re-
solve the very thin gap region. In addition, it can be empha-
sized that the gold nanodisks require a relatively fine discreti-
zation compared to the surrounding medium (free space). 

 
Fig. 2: (a) Surface mesh of the FVTD model, (b) close-up 

view of the gap region. The tetrahedral volume mesh is not 
shown for the sake of a better visibility. 

The strong inhomogeneity of the mesh prevents a 3D 
explosion of number of cells, and moreover redounds to 
FVTD's advantage by applying a geometry-matched local 
time-stepping (LTS) scheme. The LTS typically yields 
computational speedup factors around of 6 to 10, depending on 
the problem [8]. For the present FVTD simulation, it is 
sufficient to model only a quarter of the structure, because of 
the axis symmetry of the stacked nanodisks. As indicated in 
Fig. 3, (a) a perfectly electric conducting (PEC), and (b) a 
perfectly magnetic conducting (PMC) symmetry plane can be 
exploited, reducing the degrees of freedom of the simulation 
by a factor of four. 

In TD, the whole frequency band of interest can be simulated 
in one simulation run using an appropriate excitation pulse, as 
shown in Fig. 4 (a). However, the system response of the 
highly resonant structure of the stacked nanodisks exhibits an 
extremely extended ringing, making long simulation times 
necessary, which becomes apparent in Fig. 4 (b), where the 

time evolution of the electric field in the center of the gap is 
plotted. Only after around 300 fs, which is 50 times the 
duration of the excitation pulse, the electromagnetic field in 
the tiny gap has decayed sufficiently to reflect accurately the 
steady state (in FD) after Fourier analysis. 

 
Fig. 3: (a) PEC and (b) PMC symmetry planes exploited in 

the FVTD simulation. 

 
Fig. 4: (a) Gaussian pulse used as excitation, (b) system 

response at the center of the structure in the gap filled with air 
(green line) and SiO2 (red line). 

The magnifying glasses in Fig. 4 (b) provide a closer look at 
the time-dependent behavior of the electric field in the center 
of the gap. A single frequency sinusoid is observed in the air-
filled gap, and a beat frequency in the SiO2-filled gap, both 
with an exponentially decaying envelope. This suggests that in 
the observed frequency range a single resonance exists in the 
center of the air-filled gap. In contrast, there are multiple 
resonances observable in the SiO2-filled gap, resulting in the 
beat behavior. This is confirmed in Fig. 5, depicting the FD 
characteristics of the electric field in the center of the gap. The 
SiO2-filled gap has several distinct resonances, with the most 
prominent at 850 nm and 1165 nm, whereas the electric field 
in the center of the air-filled gap shows a single resonance at 
830 nm. The evolution of these resonances as a function of the 
location in the gap will be discussed in more detail in 
section 5. 

Unfortunately, for the modeling of dispersive materials in 
TD simulations, it is not straightforward to use measured FD 
material parameters. An adequate fitting to analytical material 
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models such as Debye, Lorentz and Drude models has to be 
performed. How this is done in the FVTD method, is explained 
in the following section. 

 
Fig. 5: FVTD simulation of field enhancement in the gap 

filled with air and SiO2 in the center of the gap at 0 nm. 

ε∞  3.65 
Lorentz n=1 n=2 
Δεn

Lo  1.47 1.89 
ωn
Lo  4.79⋅1015 s−1 6.45⋅1015 s−1 

γ n
Lo  9.08⋅1014 s−1 1.39⋅1015 s−1 

Drude p=1  
ω p
Dr  1.28⋅1016 s−1  

γ p
Dr  2.76⋅1013 s−1   

Table 1: Parameters of the Lorentz-Drude model to fit the 
measured permittivity of gold in the range of 300 to 1600 nm. 

4 DISPERSIVE MATERIAL DESCRIPTION 
Since the finite-volume technique is applied in time domain, 

the material characteristic of gold has to be approximated by 
an appropriate material model. In FVTD, a modular usage of 
dispersive material models is implemented, allowing a flexible 
handling of a mixed P-pole Debye (superscript De), Lorentz 
(Lo) and Drude (Dr) models 

 

εr = ε∞ + Δεm
De

1+ jωγ m
De

m
∑

+ Δεn
Lo ·(ωn

Lo )2

(ωn
Lo )2 + 2 jωγ n

Lo −ω 2
n
∑ −

(ω p
Dr )2

ω 2 − jωγ p
Dr

p
∑ .

 (1) 

For the representation of gold at visible frequencies, a 
double Lorentz, single Drude model was found to be suitable 

 εr = ε∞ +
Δεn

Lo ⋅ ωn
Lo( )2

ωn
Lo( )2 + 2 jωγ n

Lo −ω 2
n=1

2

∑ −
ω1
Dr( )2

ω 2 − jωγ 1
Dr  (2) 

with material parameters listed in Table 1 [11]. The material 
model (2) accurately represents the measured permittivity of 
gold in a wide frequency range. Fig. 6 compares the measured 
values of the gold permittivity (dashed lines) to corresponding 
values obtained with the fitting parameters (solid lines). A 
reasonable agreement is achieved for both, real and imaginary 
part of εr, over the wavelength band from 300 nm to 1600 nm. 

Since the behavior of the permittivity of gold is not smooth, 
especially in between 300 nm and 600 nm, its modeling with 
analytical functions as (1) is a challenging task and three poles 
are required to find a satisfying approximation. 

In order to enable a fair comparison between the two 
different computational algorithms, the analytical gold 
permittivity values based on a two-pole Lorentz, one-pole 
Drude model (2) are employed in both, JCMsuite and FVTD 
simulations, in the following. 

 
Fig. 6: Fitted (solid lines) versus measured (dashed lines) 

bulk gold permittivity. 

5 RESULTS 

In the following, the discussed quantity of interest is the 
field enhancement, which is defined as the absolute value of 
the FD electric field, normalized to the FD excitation ampli-
tude. Fig. 7 depicts the field enhancement at different positions 
in the 2 nm wide gap region as a function of wavelength. Ac-
cording to the coordinate system indicated in Fig. 1, the elec-
tric field is plotted at four locations on the x-axis, namely at 
x =5 nm, x = 30 nm, x = 50 nm, and x = 65 nm. Resonances 
can be observed at 830 nm and 1335 nm in the case of an air-
filled gap and at 850 nm, 965 nm and 1165 nm in the case of a 
SiO2-filled gap. For both cases, the FVTD solution (solid lines) 
is compared to the JCMsuite solution (dashed lines). The 
overall agreement between results of the finite-volume method 
in TD and the finite-element method in FD is very good for all 
positions and frequencies. The resonances of the two structures 
are identified at identical frequencies for both methods. A 
discrepancy is observed in the maximal amplitude of the most 
resonant modes, which is attributed to the slow convergence of 
TD simulations for highly resonant structures. The general 
consistency across two very different numerical methods 
provides a good confidence that the results are reliable for the 
electromagnetic modeling of plasmonic nano particles. 

Fig. 8 shows the distribution of the field enhancement along 
the x-axis at the observed central wavelength of the reso-
nances. This reveals the influence of the order of the resonance 
on the enhancement factor and its distribution inside the gap. 
In the case of an air-filled gap, the resonance at 1335 nm 
(Fig. 8 (a), red line) shows maximum enhancement in the edge 
region, while the resonance at 830 nm (Fig. 8 (a), green line) 
has its maximum in the center region. 

|E
| (

no
rm

al
iz

ed
)

0

20

40

60

80

100

600 800 1000 1200 1400 1600
Wavelength (nm)

SiO2
Air

355



 

 
Fig. 7: Simulated field enhancement (FVTD: solid lines, 

JCMsuite: dashes lines) in the gap filled with air and SiO2. 

 
Fig. 8: FVTD simulated field enhancement in the gap filled 

with (a) air and (b) SiO2 along the x-axis at the resonance 
frequencies. 

For the SiO2-filled gap, due to the well-known red shift of 
plasmonic resonances with increasing refractive index of the 
dielectric, the mode with maximum enhancement in the center 
region appears at 1165 nm (Fig. 8 (b), green line) while the 
edge-dominated mode is shifted out of the analyzed wave-
length range. The observed resonances at 850 nm and 965 nm 
are higher-order modes that show additional maxima and 
minima along the x-axis. As can be observed in Fig. 8, the dis-
tribution of the electromagnetic field inside the gap region is 
not strictly rotationally symmetric (however, it is symmetric 
with respect to the xz plane). This is due to the plane wave 
excitation, which is not rotationally symmetric. 

Simulations like these can greatly contribute to the success-
ful design of such plasmonic structures and can be extended to 
more complex devices with a specific functionality. This is 
particularly relevant as the nano-fabrication processes are 
costly and time consuming. It is well known that the central 
wavelength and the magnitude of the resonances of coupled 
plasmonic systems depend strongly on gaps, on the material 
and on the dimensions of the metallic nanostructures [12]. Ad-
ditionally, as shown here, the field strength at a resonant 
wavelength varies strongly within the region of interest, 

showing characteristic mode-dependent distributions. In the 
illustrated case, either the fundamental or a higher-order mode 
is favorable, depending on the targeted application. The first-
order mode is to be preferred if high enhancement factors in 
the edge region are needed. One the other hand, higher-order 
modes are favorable for applications based on the center region 
of the gap. Additionally, it can be expected that these modes 
are less influenced by manufacture tolerances and ageing. 

6 CONCLUSIONS 
The plasmonic resonances of stacked nanodisks were numeri-
cally investigated in this paper. The simulated field enhance-
ment obtained by JCMsuite and FVTD showed good agree-
ment over the whole wavelength spectrum of interest, although 
both methods are based on different concepts and are applied 
in frequency and in time domain, respectively. The direct ob-
servation of the modes inside the plasmonic gap is an impor-
tant step in the development process. This can be conveniently 
achieved by electromagnetic numerical modeling, providing a 
physical understanding essential for a successful design. 
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