
A Comparison of Three Meshless Algorithms:
Radial Point Interpolation, Non-Symmetric and

Symmetric Kansa Method
T. Kaufmann and C. Fumeaux

School of Electrical & Electronic Engineering,
The University of Adelaide

Adelaide, South Australia 5005, Australia

C. Engström
Laboratory for Electromagnetic Fields
and Microwave Electronics (IFH),

ETH Zurich, Zurich, CH-8092, Switzerland

Abstract—Three different meshless methods based on radial
basis functions are investigated for the numerical solution of
electromagnetic eigenvalue problems. The three algorithms, the
non-symmetric Kansa approach, the symmetric Kansa method
and the radial point interpolation method, are first described
putting emphasis on the influence of their formalism on practical
implementation. The convergence rate of these meshless methods
is then investigated, showing through selected examples surpris-
ingly similar performance despite very different formulations.
The most appropriate algorithm selection will then depend on
efficiency and ease of implementation for the class of problems
considered, i.e. eigenvalue problems, frequency-domain or time-
domain. When compared to various finite-element (FE) imple-
mentations for the presented numerical examples, the meshless
methods appear more accurate and efficient than the FE methods.
Those results combined with the convenience of node distribu-
tion adaptation makes meshless algorithms very promising for
electromagnetic simulations.

Index Terms—eigenvalues and eigenfunctions, meshless meth-
ods, finite difference methods, radial basis functions.

I. INTRODUCTION

Meshless methods are an emerging alternative to mesh-
based methods in computational electromagnetics. Instead of
solving differential equations numerically on a mesh topology,
the problem is solved on a set of collocation nodes. This avoids
the computational effort related to mesh generation and the
overhead required for handling a mesh topology. Additionally,
node adaptation for improving the accuracy or for optimization
is greatly simplified.

Radial basis functions (RBFs) are used in this paper, instead
of the polynomial basis functions typically applied in classical
collocation methods. RBF collocation methods include the
Kansa method [1] and the radial point interpolation method
(RPIM) [2]. The use of RBFs is gaining popularity in many
fields of science, e.g. neural networks or statistical analysis. In-
terpolation by these basis functions offers improved accuracy
for flatter function shapes at the cost of increasing matrix con-
dition numbers. For the numerical solution to partial differen-
tial equations they promise exponential convergence rates with
increasing node densities and/or wider basis functions [3]. The
method can be seen as a generalized finite-difference method
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with highly accurate solutions due to advanced basis functions.
In electromagnetics, a time-domain implementation of RPIM,
which was presented in 2D for first-order problems [4], has
been extended to 3D [5] and to an unconditionally stable
formulation [6].

In this paper we investigate two variants of the Kansa
method and RPIM applied to eigenvalue problems for the
second-order wave equation. The Kansa method yields a non-
symmetric problem that is not necessarily well-posed. An
extension has been developed in a symmetric form [7]. We
develop a formulation of this well-posed symmetric Kansa
method to eigenvalue problems. Both Kansa methods solve for
the interpolation coefficients rather than for the field quantities
directly. In contrast, the RPIM approach is adapted towards an
identity mass matrix, which is advantageous for time-domain
solvers.

After an overview of their general characteristics, the ac-
curacy of the Kansa and RPIM algorithms is compared to
two variants of finite-element methods (FEMs). The goal is to
clarify the differences between the meshless approaches and
to propose applications for each method.

II. METHOD

In this section we first introduce the second-order eigenvalue
problem and describe the framework of interpolation by radial
basis functions. Later the specific implementation of the basis
functions for the three methods is summarized.

A. Second-Order Eigenvalue Problems

A two-dimensional transverse-magnetic (TM) second-order
problem is considered in this paper. The scalar electric field Ez

points perpendicularly to the computational domain Ω defined
in the x, y-plane. A Dirichlet boundary condition is applied to
model a perfect electric conductor (PEC). This yields

−ΔEz − k2Ez = 0 in Ω (1a)
Ez = 0 on ∂Ω (1b)

with the wavenumber k. To formulate an eigenvalue problem
we define the eigenvalues λ = k2 inside of the computational
domain and write (1a) as

−ΔEz = λEz. (2)
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In discretized form this becomes

−AΦ = λBΦ (3)

with a vector Φ of length equal to the number of nodes. A is
the stiffness matrix for the Laplacian and B the mass matrix.
By rearranging these two matrices the method can be further
modified to only solve for the interior nodes using modified
A�, B�. This step is explained later and leads to a non-singular
matrix B�.

B. Radial Basis Functions
Radial basis functions are of high interest for the inter-

polation of scattered data due to their high accuracy [8]. A
field value u at position x can be approximated using basis
functions at N collocation nodes xn by

�u(x)� =
N�

n=1

anφn(x). (4)

Here the radial basis functions are of Gaussian type

φn(x) = exp

�
−αc

|xn − x|2
d2c

�
(5)

and centered at the collocation nodes xn. The accuracy of
the method depends on the shape factor αc. In general, a
lower value leads to more accurate results, but also to larger
condition numbers. Conversely, if the value of αc is too large,
the system becomes unstable. The sensitivity of the method on
this shape parameter has been widely reported [9]. Recently
an algorithm, the leave-one-out-cross-validation (LOOCV) for
pseudo-spectral methods [7], has been presented that leads to
high accuracy by optimizing this shape parameter. Despite the
radial dependence of the basis functions, the accuracy benefits
are visible on arbitrary node distributions regardless of domain
shapes, as demonstrated in [10].

The RBFs applied here are globally supported, leading to
full matrices. To increase the scaling properties of the method
for larger problems, compactly supported basis functions like
the Wendland basis functions [8] can be used or the problem
could be solved in a localized approach to obtain sparse ma-
trices [2]. Unfortunately both these options degrade accuracy.
An alternative approach to maintain the accuracy of global
basis functions while being able to solve large problems is the
use of domain decomposition [11].

C. Non-Symmetric Kansa Method
We follow the implementation of [12] for the non-symmetric

Kansa Method (NS-Kansa). There the basis functions at the
boundary nodes are replaced with their gradients, which give
better accuracy. The governing equation (4) subsequently
becomes

�u(x)� =
NI�

n=1

anφn(x) +

NB�

n=NI+1

an(x− xn)∇φn(x) (6)

with NI interior and NB boundary nodes (N = NI + NB).
The eigenvalue problem (2) can now be discretized and written
in the matrix form (3) using

[ÃL
1 ]i,j = Δφj(xi),

�
i = [1, NI ]
j = [1, NI ]

(7a)

[ÃL∇
1 ]i,j = Δ(xi − xj)∇φj(xi),

�
i = [1, NI ]
j = [NI + 1, NB ]

(7b)

[Ã1]i,j = φj(xi),

�
i = [NI + 1, NB ]
j = [1, NI ]

(7c)

[Ã∇
1 ]i,j = (xi − xj)∇φj(xi),

�
i = [NI + 1, NB ]
j = [NI + 1, NB ]

(7d)

[B̃1]i,j = φj(xi),

�
i = [1, NI ]
j = [1, NI ]

(7e)

[B̃∇
1 ]i,j = (xi − xj)∇φj(xi),

�
i = [NI + 1, NB ]
j = [1, NB ]

(7f)

The stiffness and mass matrices (3) are given by

A1 =

�
ÃL

1 ÃL∇
1

Ã1 Ã∇
1

�
, B1 =

�
B̃1 B̃∇

1

0

�
. (8)

The problem size can be reduced by reforming the lower
blocks of A1,B1 and inserting them into the upper part [12].

A�
1 =

�
ÃL

1 − ÃL∇
1 Ã−1

1 Ã∇
1

�
, B�

1 =
�
B̃1 − B̃∇

1 Ã−1
1 Ã∇

1

�

(9)
We solve (3) for the interpolation coefficients Φ =
[a1, . . . , aNI

]T . The extraction of the field values is done
via (6) and involves a matrix inversion. The NI ×NI matrices
A�, B� are not symmetric and counter examples show that A�

may not be invertible [13]. However, it should be noted that
for a large number of investigated numerical examples this did
not cause any adverse effect on the results [14]. A thorough
theoretical investigation on this issue was performed in [15]
and is was shown that it generally can be solved through
oversampling.

D. Symmetric Kansa Method

The formulation of the NS-Kansa method can be brought to
a symmetric form by modification of the basis functions. The
Gaussian interior RBFs φn are replaced by their Laplacians
Δxnφn where the derivatives act on the collocation nodes xn

�u(x)� =
NI�

n=1

an(Δ
xnφn)(x) +

NB�

n=NI+1

anφn(x). (10)

The stiffness and mass matrices can be constructed in the same
way as for the NS-Kansa Method. Here, the Laplace operator
is applied analogously as in (7a) onto the interior nodes
(ÃLΔxn

2 ) and leads to fourth-order derivatives of the original
RBFs Δ(Δxnφn)(x). The operator applied to the boundary
nodes yields ÃL

2 with Δφn(x) similar to (7b). The RBFs
Δxnφn applied to (7c) and (7e) lead to ÃΔxn

2 and B̃Δxn

2 ,
respectively. The basis functions in (7d) and (7f) replaced with
φn yield Ã2 and B̃2. The problem (3) becomes:

A2 =

�
ÃLΔxn

2 ÃL
2

ÃΔxn

2 Ã2

�
, B2 =

�
B̃Δxn

2 B̃2

0

�
. (11)

Due to the expansion (10), the stiffness matrix A2 is now
of symmetric form. The same transformation as in NS-Kansa
brings both matrices into non-singular form:

A�
2 =

�
ÃLΔxn

2 − ÃL
2 Ã−1

2 ÃΔxn

2

�
,B�

2 =
�
B̃L

2− B̃2Ã
−1
2 ÃΔxn

2

�

(12)
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Now both the mass matrix A2 and the stiffness matrix B2

are symmetric and non-singular, thus making the formulation
well-posed. Additionally this symmetric form is beneficial for
numerical solvers.

E. Radial Point Interpolation Method

In both Kansa methods the field quantities are extracted in
a post-processing step by a matrix inversion. For RPIM, this
step is moved to a preprocessing step. The basis functions here
are evaluated in a point-matching procedure and a set of shape
functions functions is obtained as [10]

�u(x)� = [φ1(x) . . . φn(x)]R
−1
0 Us

= Ψ(x)Us =
N�

n=1

Ψn(x)u(xn).
(13)

The symmetric matrix R0 contains the basis functions φn(x)
evaluated at all collocation node positions in the point-
matching technique, and therefore Ψn(x) fulfills the delta
property. In contrast to the previous algorithms, a field quantity
is approximated by a direct linear combination of the values at
the surrounding nodes. The discretized form of (3) is obtained
analogously to the previous two approaches, but this time the
Laplace operator is applied to the shape function Ψn(x). In
order to solve the problem on the interior nodes and to bring
the mass matrix into non-singular form, shape functions are
only evaluated at the interior points

[A�
3]i,j = ΔΨj(xi),

�
i = [1, NI ]
j = [1, NI ]

(14a)

[B�
3]i,j = Ψj(xi),

�
i = [1, NI ]
j = [1, NI ]

. (14b)

The eigenfunctionsΦ = [u1, . . . , uNI
]T in (3) now correspond

directly to the field values. It is interesting to note that B�
3 is

the identity matrix. This is advantageous for the numerical
eigenvalue solver or when the method is applied to time-
domain problems, where an explicit time stepping, e.g. in the
localized approach [4], leads to an efficient scheme.

III. NUMERICAL COMPARISON

Numerical experiments are performed to compare the per-
formances of the three methods. The convergence behavior for
a fixed node distribution and decreasing values of the shape
parameter (A) and the convergence rate for an increased node
density (B) are evaluated. This is done analogously to [16]
where the RPIM first-order Maxwell eigenvalue solver was
considered. Fig. 1 shows the structures of the stiffness and
mass matrices for the three methods. It can be seen that both
Kansa mass matrices in Fig. 1a and 1b are full, whereas
the mass matrix for RPIM is the identity matrix (Fig. 1c).
Additionally Fig. 1b illustrates the symmetry of the structure
in the S-Kansa method.

A. Parameter Convergence

A numerical experiment has been performed for a cylinder
with radius one. The nodes were placed homogeneously in
a concentric fashion with five nodes per radius. This results
in a matrix size of 79 × 79. According to [3], the accuracy

(a) (b) (c)
Fig. 1. Matrix structures for (a) the non-symmetric Kansa Method (9), (b)
the symmetric Kansa Method (12) and (c) RPIM (14). The stiffness matrix
A� is shown on top and the mass matrix B� on the bottom.

Fig. 2. Convergence for decreasing values of the shape parameter αc. The
number of degrees of freedom is fixed to ndof = 79. The node distribution
is shown in the inset with the first and fifth eigenmode on the left and right,
respectively.

of the methods should increase for lower values of the shape
parameter αc. This is clearly visible in Fig. 2 where the relative
error for the first and fifth eigenvalues decrease down to very
low minimum of 10−7 and 10−5 respectively. At a certain
point, indicated by a blue line, a numerical breakdown occurs
due to the ill-condition of the matrices. The results of all three
RBF methods are almost identical despite the differences in
the formulation.

B. Spatial Convergence

To evaluate the convergence rate and achievable accuracy
of the method the error for the previous two eigenvalues
has been calculated for increasing node densities. For each
node distribution, the LOOCV algorithm is applied to find an
optimized shape parameter αc. Fig. 3 shows the result of the
uniform refinement in the cylindrical domain. The meshless
approaches show the expected exponential convergence up to
a point where the rate slows down, marked by a blue line.
This is explained by the inability of the current LOOCV
implementation to find the best global shape parameter αc for
these larger node distributions. Again, all three RBF methods
are almost identical. It should be noted that the convergence
rate could be further increased by an adaptive refinement.
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Fig. 3. Convergence for increased node densities with uniform refinement.
Comparison with first-order h-FEM and high-order discontinuous Galerkin
finite element-method using curved boundaries. The meshless methods are
NS-Kansa (solid ), S-Kansa (dashed ) and RPIM (dash-dot ).

TABLE I
NUMBER OF DEGREES OF FREEDOM REQUIRED TO ACHIEVE AN ERROR

BELOW 10−5 FOR THE FIRST AND FIFTH EIGENVALUE (EV).

EV Meshless h-FEM (p = 1) h-FEM (p = 5) p-DG-FEM
1 42 1.0 · 105 116 92

5 170 1.1 · 106 320 220

The results are compared to the first-order FEM implemen-
tation (h-FEM) in the partial differential toolbox in MAT-
LAB and to a high-order discontinuous Galerkin (p-DG-
FEM) implementation [17] with curved elements. These two
methods are representative for the simplest and one of the
most advanced FEM implementations available. In h-FEM, a
gradual mesh refinement has been performed, and in p-DG-
FEM, the polynomial order of the method has been increased
step-by-step. In all cases, the meshless methods are more
accurate and more efficient than the FEM implementations.

A further comparison is presented in Tab. I, where the
numbers of degrees of freedom, i.e. the matrix sizes necessary
to achieve a relative error of 10−5 are listed. An additional
result has been included with a fifth-order finite-element
simulation performed in COMSOL with mesh refinement. The
meshless approaches outperform all three FEM codes in terms
of numbers of degrees of freedom and computation time. It
can also be seen that the fifth-order FEM lies in between first-
order FEM and p-DG-FEM .

IV. CONCLUSION

Three meshless methods based on radial basis functions
have been presented. The NS-Kansa method leads to a non-
symmetric form and does not necessarily guarantee unique
solutions. Brought into symmetric form, the method becomes
well-posed (S-Kansa). Both algorithms solve for the interpo-
lation coefficient and to obtain the field values, a matrix in-
version is performed in the end. The radial point interpolation
(RPIM) method performs this step in preprocessing where an
identity mass matrix is the result.

Despite the different formulations, all algorithms appear to
yield numerically almost identical results, and all methods
outperform classical finite-element approaches for the pre-
sented examples. In time domain schemes where an explicit
mass matrix is required RPIM is most suited. The S-Kansa
method is beneficial in its ability to guarantee unique solu-
tions. Nevertheless, for the NS-Kansa method the approach
of oversampling the collocation nodes can be of use. The
meshless radial basis functions represent a very promising
class of numerical methods for electromagnetic simulations,
as they have demonstrated a very high accuracy even for very
coarse discretizations.
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