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Abstract
Near-field interactions in an array of electric inductive–capacitive (ELC) resonators are
investigated analytically, numerically and experimentally. The measurement and simulation
results show that inter-cell coupling plays an important role in determining the response of
metamaterials. A quasistatic dipole–dipole interaction model, together with a Lagrangian
formalism, quantitatively explains the interplay between the electric and magnetic couplings in
the resonator array. Depending on the alignment of the resonators, the couplings can cause
resonance shifting and/or splitting. The knowledge obtained from this study is crucial in
designing metamaterials with ELC resonators.

(Some figures may appear in colour only in the online journal)

1. Introduction

A metamaterial defines a group of resonators that collectively
exhibit a strong electric and/or magnetic resonance. Examples
of such resonators include split-ring resonators (SRRs)
[1], (electric inductive-capacitor (ELC)) resonators [2, 3]
and fishnets [4]. These resonators typically operate in
the effective medium regime owing to their subwavelength
physical dimensions. Their response is therefore characterized
by the effective permittivity and permeability, which can be
controlled via the shape, size and material characteristics of
the resonators.

As important as the geometry and constituent materials is
near-field coupling between the resonators that also plays a role
in determining the response of metamaterials. The resonance
hybridization due to near-field interactions in metamaterials
leads to new phenomena, including resonance splitting and
band broadening [5]. A Lagrangian formalism with a
quasistatic dipole–dipole interaction model [5, 6] has been
successfully used to study the hybridization effects in SRR
dimers [7–9] SRR chains [10, 11] and SRR arrays [12–14].
In these resonator systems, it is found that both electric and
magnetic dipoles contribute to inter-resonator coupling, and
the coupling efficiency depends on the distance and relative
orientation among the resonators [5].

An ELC resonator was proposed as a route to
metamaterials with customizable values of the permittivity
[2, 3]. These resonators, in conjunction with SRRs that provide
negative permeability, can be used to construct a negative-
index material [15, 16]. The unconventional electromagnetic
properties of ELC resonators have been exploited in many
other types of devices, e.g., absorbers [17, 18], reflectors
[19], modulators [20, 21], polarizers [22, 23] and wave plates
[24]. The implementation of ELC resonators in a wide
range of applications necessitates the insight into their
near-field behaviour. Understanding the coupling between
nearby resonators will help towards engineering desirable
responses.

A major difference between an ELC resonator and an SRR
is the structural symmetry that significantly influences their
field distributions and dipole moments. Specifically, the mirror
symmetry in an ELC resonator prohibits the magnetic and
magnetoelectric inductions that take place in SRRs [2]. The
implication is a remarkable difference in inter-cell coupling
behaviours. Hence, the knowledge acquired from those earlier
studies on the SRR hybridization is not directly applicable
to ELC resonators. As such, this paper presents a study
on near-field interactions in 3D ELC-resonator arrays. The
study begins with lateral coupling in planar resonators in
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Figure 1. ELC resonators. (a) A unit cell with dimensions as
follows: g = 0.3 mm, b = 0.4 mm, l = 1.8 mm and d = 4 mm.
(b) An array of ELC resonators. The electric dipoles (red arrows)
are in plane and perpendicular to the gaps, whilst the magnetic
dipoles (blue arrows) are out of plane.

section 2. It then extends to the coupling effects in the
stacked resonators, or ELC dimers, in section 3. The coupling
mechanisms will be explained through a dipole interaction
model and Lagrangian description. The results clearly show
unique coupling behaviours in the symmetric resonators.

2. Transversal coupling

2.1. Observation

The transversal or in-plane coupling among planar ELC
resonators is considered in this section. A schematic diagram
of a unit cell is shown in figure 1(a). In order to study the
coupling effects, the lattice constants ax and ay are varied
between 5 and 10 mm with a step size of 1 mm. An array
of the resonators is fabricated on an epoxy FR4 substrate with
a thickness of 0.8 mm, a measured dielectric constant of 4.0
and a reported loss tangent of 0.02. The metal used for the
resonators is gold-coated copper with a copper thickness of
35 µm. The resonator array gives the first-order resonance in
the microwave X band, i.e. 8–12 GHz. Shown in figure 2, the
total board dimensions are 160 mm 190 mm, which is large
enough to span across the main beam of a nearby feeding horn
antenna.

The measurement is carried out in an anechoic chamber
with a pair of microwave horn antennas as transmitting and
receiving ports, separated by 5 m. The array is placed 50 mm
away from the horn aperture of the receiving antenna to
cover the receiving beamwidth. The sample transmission
is measured and compared with the free-space transmission.
The experimental configuration is not ideal because of the
plane-wave approximation and the finite size of the array in
the lateral directions. As a supplement, the simulation with
ideal conditions is performed using CST Microwave Studio.
Unit-cell boundary conditions are utilized for the transverse
boundaries to replicate an infinite planar array of resonators.
Two Floquet ports facing the array allow determining its
response to a plane wave incident normally.

Figure 3 depicts the simulated and measured transmission
profiles for the arrays with different lattice constants. The
results from simulation and measurement are in general
agreement. In figures 3(a) and (b), as the horizontal lattice

Figure 2. Fabricated metamaterials with different periodicities.
Each metamaterial is composed of an array of ELC resonators on an
FR4 substrate. The periodicity of the arrays is varied in order to
experimentally observe the effect of coupling in the transverse
directions. The inset shows a metamaterial positioned in the holder.
The absorber frame prevents microwave diffraction around the
edges of the sample.

constant decreases, a small change in the resonance frequency
is observed, i.e., approx 0.5% of the initial value. From
figures 3(c) and (d) a large redshift can be observed as the
vertical lattice constant decreases. In the case of a square
lattice in figures 3(e) and (f), the decreasing lattice constants
cause a redshift in the resonance.

A change in the resonance frequency can be described by
the dipole–dipole interaction model, illustrated in figure 1(b).
A nearly constant resonance frequency as ax varies in
figures 3(a) and (b) can be attributed to the counteraction
between the transversely coupled electric and magnetic dipoles
in the horizontal direction. The electric dipoles are parallel and
in phase and hence tend to shift the resonance upwards, but the
effect is weakened by the magnetic dipoles that are anti-phase.
On the other hand, a large resonance redshift as ay decreases
in figures 3(c) and (d) is caused by longitudinal coupling of the
in-phase electric dipoles in the vertical direction. Likewise, a
redshift as ax and ay decrease in figures 3(e)and (f) is mainly
caused by the longitudinal electric dipole coupling. In all
of the cases, as the lattice constants decrease, the resonance
is broadened and the effective extinction cross section (not
shown) is reduced. These effects are from enhanced scattering
in strongly coupled dipoles [14].

2.2. Analysis

The near-field interactions among the in-plane resonators
can be quantitatively explained on the basis of a quasistatic
approximation [9, 14], in which the free-space wavelength is
considered to be much longer than the interaction length. In
an uncoupled resonator, the electrostatic and kinetic energies
stored in the capacitive gap and inductive loop are given as,
respectively, Q2/2C and LQ̇2/2. Here, Q is the charge, Q̇ =
dQ/dt is the current and L and C are the distributed inductance
and capacitance. Given that Qu,v and Q̇u,v , respectively,
denote the total charge and current in the uvth resonator, the
Lagrangian for a planar array of coupled ELC resonators can
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Figure 3. Transmission amplitude profiles for resonator arrays with different lattice constants. (a), (c), (e) Simulation, and (b), (d), (f )
experimental results. (a), (b) ax varies and ay = 10 mm. (c), (d) ax = 10 mm and ay varies. (e), (f ) or ax and ay vary. Note the different
scales for the three cases.

be expressed as

L =
∑
u,v

[
L

2
(Q̇2

u,v + 2κhx
Q̇u,vQ̇u+1,v − 2κhy

Q̇u,vQ̇u,v+1)

− 1

2C
(Q2

u,v + 2κex
Qu,vQu+1,v − 2κey

Qu,vQu,v+1)

]
, (1)

where κ{h,e} are the magnetic and electric coupling coefficients.
The coupling effects are considered for only the four nearest
neighbouring resonators. The sign difference in the coupled
energy terms reflects difference contributions. The coupling
coefficients are essentially direction-dependent, as they are
determined by the uneven charge and current distributions over
coupled resonators [6]. It is known that at the same distance
the magnitude of κey

is twice that of κex
, according to the near-

field electric field distribution of an infinitesimal dipole [25].
Furthermore, as opposed to the SRR array [14], the magnetic
coupling coefficients κhx

and κhy
are not identical, because of

the unique orientation of the two magnetic dipoles within a cell.
These coefficients can be linked to the lateral lattice constants
via [14]

κhx
= κhx,0/a

3
x , (2a)

κhy
= κhy,0/a

3
y , (2b)

κex
= κex,0/a

3
x , (2c)

κey
= κey,0/a

3
y . (2d)

Solving the Euler–Lagrange equation [26]

d

dt

(
∂L

∂Q̇u,v

)
− ∂L

∂Qu,v

= 0, (3)

with the Lagrangian in equation (1) and assuming a plane-
wave excitation or Qu,v = Qu±1,v = Qu,v±1 = |Q| exp(jωt),
results in the resonance frequency of the array

ωs = ω0

√
1 + κex

− κey

1 + κhx
− κhy

, (4)

where the resonance frequency of the uncoupled resonator ω0

equals 1/
√

LC. The unknown coefficients can be determined
by comparing this solution to the measured or simulated
resonance frequency [8].

Figure 4 shows the measured resonance frequencies fitted
by the Lagrangian solution, along with the corresponding
coupling coefficients. A slight difference in the model and
measurement in figure 4(a) can be observed, particularly for the
case of ax = ay = 5 mm. This is likely to be from the magnetic
dipole coupling in the diagonal direction, which is omitted in
the model, and also from the approximation of the coupling
coefficients in equation 2. From figure 4(b), in the horizontal
direction, the magnetic coupling coefficient is slightly larger
than the electric counterpart, i.e. κhx

/κex
= 1.14. The
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Figure 4. Resonance frequencies and coupling coefficients as a function of the lattice constant. (a) Simulated resonance frequencies (dots)
fitted by the model (lines) in equation (4). (b) Coupling coefficients, κex ,0 = 15.7 mm3, κey ,0 = 31.4 mm3, κhx ,0 = 18.0 mm3,
κhy ,0 = 22.6 mm3.

opposing coupling mechanisms yield the net effect that shifts
down the resonance slightly, as illustrated in figure 4(a). In
the vertical direction, κhy

/κey
= 0.72. Hence, the dominant

electric dipole coupling causes a redshift in the resonance.
The stronger magnetic dipole coupling in the y direction, or
κhy

> κhx
, can be ascribed to the alignment of the two magnetic

dipoles within a single cell. Importantly, it is clear from
the results that the ELC resonators still exhibit a significant
local magnetic coupling activity, although their magnetic and
magnetoelectric responses are suppressed in the far field [2, 3].

3. Longitudinal coupling

3.1. Observation

This section presents a study on the effects of longitudinal
coupling in ELC resonators. The unit cell dimensions and
constituent materials are similar to those in the previous study
in section 2. However, in this study, as shown in figure 5, two
identical arrays of ELC resonators are aligned and stacked in
the propagation direction with an adjustable distance az from 1
to 10 mm with a step size of 1 mm. Between the two arrays, the
electric dipoles couple transversely, and the magnetic dipoles
couple longitudinally. For the face-to-face stack, the couplings
are mainly through free space, whilst for the back-to-face stack
a dielectric substrate will greatly influence the electric coupling
[27]. The effects from interactions among in-plane resonators
are minimized by using relatively large fixed lattice constants
of 10 mm for ax and ay . This configuration is expected to
yield the results that can reasonably reflect the activities of
ELC dimers.

Figure 6(a) shows the numerically resolved transmission
magnitude for the face-to-face array stack with varying
separations az. At az = 10 mm, the transmission resonance is
only slightly different from the resonance of the single array
with the same periods ax and ay . It implies that the two
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z

(a) Face-to-face stack (b) Back-to-face stack

E

H

k

Figure 5. Stacked ELC resonators configured for longitudinal
coupling. (a) Face-to-face stack and (b) back-to-face stack. The
lattice constants ax and ay are kept constant at 10 mm, whilst az,
measured between the resonator planes, varies between 1 and
10 mm. The electric dipoles (red arrows) are perpendicular to the
resonator gaps, whilst the magnetic dipoles (blue arrows) are normal
to the resonator plane.

arrays are weakly coupled. When they are brought closer,
the resonance is weakened and then split into two peaks,
an indication of the hybridization. Around az = 2 mm the
two resonances degenerate, before being split again into two
distant peaks at az = 1 mm. Noticeably, at az = 1 mm the
lower resonance is much stronger than the higher one. This
is because the two electric dipoles in the dimer are in-phase
at the lower resonance, and hence preferrentially coupled to
the excitation [8]. In the case of the back-to-face stack in
figure 6(b), the resonance splitting can be observed at any
distance az under investigation without a mode crossing.

Different modes of resonance can be distinguished
in the simulation. Figure 7 depicts the electric field
distributions around an ELC dimer at resonances. From the
field distributions, the symmetric and asymmetric modes of
resonance can be observed. In the symmetric mode, the
transversal electric dipoles are in phase, as are the longitudinal
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Figure 6. Transmission magnitude of the array stack for a range of az. (a) Face-to-face stack, and (b) back-to-face stack. The loss in the
substrate is neglected in the simulation. The white circles in (a) indicate the lattice constants and frequencies that are used to produce the
field distributions in figure 7.

Figure 7. Instantaneous electric field distributions for face-to-face
ELC-resonator stack. The yz plane cuts across the gap of each
resonator. (a), (b) az = 3 mm, and (c), (d) az = 1 mm. (a)
Asymmetric mode at fas = 10.3 GHz. (b) Symmetric mode at
fs = 10.5 GHz. (c) Symmetric mode at fs = 10.0 GHz. (d)
Asymmetric mode at fas = 10.6 GHz.

magnetic dipoles. Vice versa, in the asymmetric mode,
the electric dipoles are out of phase, as are the magnetic
dipoles. Hence, in either case, the effect from electric
and magnetic dipole–dipole interactions always counteracts
each other. More specifically, in the symmetric mode, the
longitudinal magnetic dipole–dipole interaction tends to shift
down the resonance, whilst the transversal electric interaction
acts in the opposite direction. In the asymmetric mode, the
electric dipole interaction tends to shift down the resonance,
whilst the magnetic interaction counteracts the effect.

For the face-to-face stack in figure 7, at az = 3 mm the
lower and higher resonances are asymmetric and symmetric,
respectively. As for az = 1 mm, the two modes are swapped.
Hence, it can be deduced that at a moderate distance between
the resonators in a dimer, i.e. az > 2 mm, the electric
dipole coupling dominantly influences the hybridization. The
observable mode crossing and swapping are caused by a high
magnetic flux density near to the surface of each resonator.
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fitted by the model (lines) in equation (6a). (b) Field coupling coefficients, κhz

= κhz,0 exp(−mhaz) and κez
= κez,0 exp(−meaz), where

κhz,0 = 0.21, κez,0 = 0.07, mh = 0.945 mm−1 and me = 0.320 mm−1. The exponential functions and associated values are obtained from
observation.

In this case, the electric dipole coupling is dominated by the
magnetic coupling. An additional investigation shows that
for the back-to-face stack, the lower and higher resonances
are asymmetric and symmetric, respectively, at 1 mm �
az � 10 mm. In the other words, the electric dipole–dipole
interaction always controls the hybridization. The different
hybridization behaviour in the back-to-face stack is likely to be
from the intermediate dielectric layer that promotes the electric
dipole interaction below az = 2 mm. By choosing a thinner
substrate it might be possible to restore the mode crossing.
However, this case will not be considered in section 3.2.

3.2. Analysis

The analysis in this part emphasizes the coupling in the face-
to-face stack, shown in figure 5(a). Owing to the large
distance among in-plane resonators, the couplings in the lateral
directions are negligible. By considering only a pair of stacked
resonators, or a dimer, the Lagrangian can be established as [9]

L = L

2
(Q̇2

1 + 2κhz
Q̇1Q̇2 + Q̇2

2)

− 1

2C
(Q2

1 + 2κez
Q1Q2 + Q2

2), (5)

where κhz
and κez

represent the magnetic and electric coupling
coefficients in the propagation direction, respectively. Solving
the Euler–Lagrange equation, withQ1 = Q2 for the symmetric
mode ωs, and Q1 = −Q2 for the asymmetric mode ωas, yields

ωs = ω0

√
1 + κez

1 + κhz

, (6a)

ωas = ω0

√
1 − κez

1 − κhz

. (6b)

These resolved modes of resonance are similar to the case of
SRR dimers or stereometamaterials [5, 9].

Table 1. Coupling coefficients of ELC resonators in different
directions. The coefficients are obtained from the analyses in
sections 2.2 and 3.2, and are estimated at ax = ay = az = 5 mm.

Coupling coefficients x y z

Electric, κe 0.126 0.251 0.014
Magnetic, κh 0.144 0.180 0.002

The modelled resonance frequencies and the coupling
coefficients for the dimer are depicted in figure 8. A small
discrepancy between the analytical and numerical models is
likely caused by higher-order interactions omitted from the
Lagrangian. The two coefficients can be approximated by
exponential functions of the distance. The analysis confirms
that, depending on the distance, either the electric or magnetic
dipole interaction influences the hybridization. For az >

1.8 mm, the electric dipolar coupling dominates the behaviour
of ELC dimers. At az ≈ 1.8 where κhz

= κez
, the mode

crossing can be observed. As az approaches 1 mm, the
magnetic coupling coefficient rises significantly and surpasses
the electric coupling coefficient, due to the magnetic activity
close to the surfaces of the resonators.

Table 1 summarizes the coupling coefficients between
ELC resonators in different directions with the same lattice
constant. By comparing only the electric coupling coefficients,
it is clear that the coupling strength between electric dipoles
is largest in the y direction. This result is agreeable with
the intermediate near-field radiation pattern of an infinitesimal
electric dipole, whose field strength is strongest in the axial
direction [25]. The magnetic coupling coefficients suggest that
the coupling strength is very small in the direction normal to the
resonator plane. The coupling strength becomes considerably
large in the other two directions, despite the zero net magnetic
flux in an individual ELC resonator.
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4. Conclusion

This paper presents a comprehensive investigation on the
near-field interactions among ELC resonators. The observed
resonance behaviours are analysed using the Lagrangian
formalism. It can be concluded that the near-field interaction
in the horizontal direction only slightly changes the resonance
due to the counteraction between the electric and magnetic
couplings. In the vertical direction, the coupling causes a large
redshift in the resonance due to in-phase longitudinal electric
dipoles. In the case of the ELC-resonator dimer, the resonance
hybridization exhibiting symmetric and asymmetric modes can
be observed, and the dominating coupling mechanism depends
on the distance between the two resonators. It is pointed out
that although an ELC resonator does not possess a magnetic
or magnetoelectric response to an external field, the induced
local magnetic field significantly contributes to the near-field
interactions and cannot be neglected. The knowledge derived
from this analysis is essential for designing and analysing ELC
resonators in various applications.
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