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Abstract— Meshless methods are numerical methods that have
the advantage of high accuracy without the need of an explicitly
described mesh topology. In this class of methods, the Radial
Point Interpolation Method (RPIM) is a promising collocation
method where the application of radial basis functions yields
high interpolation accuracy for even strongly unstructured node
distributions. For electromagnetic simulations in particular, this
distinguishing characteristic translates into an enhanced capa-
bility for conformal and multi-scale modeling. The method also
facilitates adaptive discretization refinements, which provides an
important tool to decrease memory consumption and computa-
tion time. In this paper, a refinement strategy is introduced for
RPIM. In the proposed node adaptation algorithm, the accuracy
of a solution is increased iteratively based on an initial solution
with a coarse discretization. In contrast to the commonly used
residual-based adaptivity algorithms, this definition is extended
by an error estimator based on the solution gradient. In the
studied cases this strategy leads to increased convergence rates
compared with the standard algorithm. Numerical examples are
provided to illustrate the effectiveness of the algorithm.

I. INTRODUCTION

Meshless methods have recently attracted interest recently in
computational modeling across various engineering disciplines
due to their striking properties [1]. This novel class of numer-
ical algorithms provides the ability of conformal and multi-
scale modeling with an unstructured node distribution without
the need of defining an explicit mesh topology. For electro-
magnetic modeling, instead of solving the Maxwell’s equations
on a mesh structure, a solution is sought on arbitrarily located
nodes in a collocation approach. This facilitates conformal
modeling of complex structures and dynamic adaptation of
node distributions. Using radial basis functions (RBF), a very
high interpolation accuracy can be achieved with a low number
of nodes. The radial point interpolation method (RPIM) [2] is a
prominent representative of meshless methods based on RBFs,
and is used throughout this paper. Theoretical evaluations have
shown that exponential convergence rates can be achieved
either through a refined node distribution, or through the
flattening of the radial basis functions [3].

In the framework of RBF-based meshless methods, gener-
ally two approaches exist. First, for very high accuracy, global
basis functions extend over the whole computational domain.
They attractive for small problems and for achieving very high

accuracy. Unfortunately, in this approach the solution requires
the inversion of a full matrix for the domain considered and the
computational effort rises quickly with the size of the problem.
A remedy to this issue is provided by domain decomposition
methods, where the computational domain is split into several
subdomains, each of which can be solved separately very
efficiently. In an iterative approach, a global solution can
be found by “stitching” solutions of the sub-domains, e.g.
using a Schwartz scheme [4]. An alternative approach is the
use of local basis functions, where only nodes in a small
support domain encircling each node are considered. This local
approach results in efficient solutions based on sparse matrices,
however at the cost a degradation of interpolation accuracy.

In the context of computational electromagnetics, several
important steps of RPIM implementations have recently been
presented. A time-domain solver based on a local formulation
has been introduced in [5] for a two-dimensional formulation
and extended in [6] to three-dimensional problems. Spectral
properties of the method and longtime stability issues have
been presented in [7]. Alternative approaches towards un-
conditionally stable formulations were published [8] with an
alternating-direction-implicit (ADI) formulation that allowed
time steps much larger than the classical Courant-Friedrich-
Levy (CFL) limit. Later, an extension using Laguerre basis
functions to model the time evolution has been presented [9].

For resonant cavities, an RPIM solver using global basis
functions has been introduced in [10] with a comparison
to other RBF methods. For that solver, a residual-based
refinement algorithm has been introduced in [11]. In the
present publication, this refinement strategy is extended with
a gradient-based a posteriori error estimator.

II. INTERPOLATION ALGORITHM

The approximation of a field component u at position x =
(x, y)T is expressed through the following linear combination
of RBFs

u(x) ≈ 〈u(x)〉 =
N∑
i=1

rn(x)an = r(x)a. (1)

The RBFs selected here are of Gaussian type as they are
known for their excellent interpolation quality. The basis
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functions are centered at collocation node location xn, i.e.

rn(x) = exp

(
−αc
|xn − x|2

dc

)
(2)

and contain a shape parameter αc and a normalization factor
dc denoting the average node distance. As investigated in [7],
widening the shape of the RBF by lowering the shape param-
eter αc improves the interpolation accuracy until a numerical
limit for the condition number of the matrices is reached.

Optionally, the basis can be expanded with additional basis
functions: monomial functions proved to be advantageous
to interpolate linear functions [2], and singular functions
helped significantly improve the performance for singular
problems [12] in computational mechanics.

The interpolation parameter a = (a1, . . . , aN ) is calculated
in a preprocessing step using a point-matching procedure.
Expressing the interpolation of the field component u at all
collocation nodes allows the setup of a linear systemu(x1)

...
u(xN )

 =

 r1(x1) . . . rN (x1)
...

. . .
...

rN (x1) . . . rN (xN )


a1

...
aN

 (3)

ue = R0a. (4)

A set of shape functions is calculated from

〈u(x)〉 = rT (x)a = rT (x)R−1
0 ue = Ψ(x)ue. (5)

Based on this expression, the approximations of lth-order spa-
tial derivatives along κ = x, y can be derived straightforwardly〈

∂lκu(x)
〉

= ∂lκr
T (x)R−1

0 ue = ∂lκΨ(x)ue. (6)

The interpolation accuracy is improved by selecting a low
value of the shape parameter αc, which however increases the
matrix condition number of R0. Best results are achieved close
to the limit of the numerical stability. A numerical optimization
called “leave-one-out-cross-validation” (LOOCV) [13] assists
the automatic selection of a nearly optimal value of αc. An
interesting alternative to this strategy is an adaptation of the
Gaussian basis functions to obtain high accuracy for low
values of the shape parameter [14].

III. EIGENVALUE SOLVER

Eigenvalue solvers for meshless RBF methods have been
presented for the compactly supported Wendland functions
in [15] and [16]. An eigenvalue solver for the RPIM variant
of RBF methods has been previously introduced in [10] and
compared with other RBF methods. The algorithm is therefore
only briefly summarized here.

In contrast to the usual RBF methods, the RPIM algorithm
solves directly for the field components. In this paper, a 2D
setup for resonant cavities computes the TM modes of given
structures, i.e. the Ez component. The governing eigenvalue
problem is based on the source-free second-order Helmholtz
equation

−∆Ez − k2Ez = 0, (7)

where we solve for the eigenvalues λ = k2

−∆Ez = λEz. (8)

jump in gradient

Fig. 1. A posteriori estimator of jump in gradient between left (xl
yj

) and
right (xr

yj
) neighbor of test node yj .

The spatial domain is discretized using an unstructured col-
location node distribution x1, . . . ,xNI

,xNI+1, . . . ,xNI+NB

with NI interior and NB boundary nodes. The boundaries are
assumed to be of Dirichlet type

Ez = 0, (9)

which corresponds to a perfect electric conductor (PEC).
The Laplace operator is approximated through (6) and the
collocation problem is formulated as follows on the interior
nodes [10]

−∆ΨEz = λΨEz. (10)

The vectors Ez of length NI represent the eigenvectors
quadratic stiffness matrix. The eigenvalues are computed with
the general purpose package LAPACK [17].

IV. NODE ADAPTIVITY

Based on a given collocation node distribution, a set of test
nodes y1, . . . ,yNT

is obtained through a Delaunay tessella-
tion [18]. The test nodes are placed on the edge centers of the
Delaunay triangles. This assures an even node distribution at
intermittent locations of the collocation nodes. On these test
node locations, an estimated a posteriori error is calculated.
The previously introduced residual form of the estimated
error [11] is enhanced here with an estimation of the jump
in the gradient of the previous solution (Fig. 1). Inspired
by the finite element approach [19], where the jump of the
gradient between two mesh cells is estimated, high values
of this estimator indicates rapid field variations. The error
estimator is expressed as the weighted sum of three terms

η(yj) =


ν1d

2
yj
|∆Ψ(yj)Ez + λΨ(yj)Ez|2 in bulk (a)

+ν2d
2
yj
|Ψ(yj)Ez|2 on PEC (b)

+ν3d
2
yj
|∇Ψ(xlyj

)Ezn̂
l
yj

+∇Ψ(xr)Ezn̂
r
yj
|2 (c)

(11)
with dyj representing the distance between the corresponding
left (xlyj

) and right (xryj
) neighbors of test node yj . The terms

(a) and (b) represent the residual-based error estimator in the
interior and on the PEC boundary, respectively. The new part,
the estimation of the jump in the gradient, is shown in (c).
Weighting factors are applied to account for the different scales
of the errors. Numerical experiments show that a good choice
of the factors is ν1 = 1, ν2 = 500, ν3 = 0.1, even though
the choice is rather robust, as previously reported in [11]. The
shape functions in (11) are calculated on the test node locations
based on (5) and (6).
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The adaptivity strategy is applied iteratively. In each iter-
ation step the error estimator (11) is calculated and all test
nodes with an estimated error larger than

η(yj) ≥ βmax
i
η(yi), (12)

are added to the set of collocation nodes. The threshold
parameter β is typically chosen as β = 0.35. At each step,
the LOOCV algorithm is applied to find an optimized shape
parameter αc. The iteration is performed until the required
level of accuracy is reached. As an indicator of the overall
error, either the change in the solution between the iterations
can be taken into account, or a global error estimator

ηg =

NT∑
j=1

η(yj) (13)

can be applied.
In the following, the new extended adaptive refinement

algorithm is illustrated on a numerical example.

V. NUMERICAL ILLUSTRATION

Numerical experiments are performed on a rectangular
cavity. The size in normalized units is chosen as 1.5× 1. The
eigenmodes of this structure are calculated and the relative
eigenvalue errors in comparison with the analytical results [20]

εrel =
λ− k2

k2
(14)

are recorded for each mode and each node arrangement.
In a first step, the evolution of the adaptive refinement

algorithm is illustrated on the TM12-mode. An initial solution
is calculated with a very coarse node distribution consisting
of only NI = 6 interior and NB = 14 boundary nodes.
Then a set of test nodes is constructed, and the relative
error (11) is estimated based on the initial solution. Fig. 2a
shows the estimated error as cells around each test node. Nodes
with an error larger than the threshold (12) are subsequently
added to the set of collocation nodes. Again, a solution is
calculated based on this new set of nodes. Fig. 2b and 2c
show the estimated error distribution at the second and fourth
iteration step. After five iterations, the error (14) is lower than
10−6. The corresponding node and field distribution is shown
in Fig. 2d. Slight asymmetries can be observed in the final
node distribution. They arise from the arbitrary choice of the
threshold parameter β, meaning that in certain situation the
nodes with estimated errors close to the threshold might not
be added due to roundoff errors. It could be observed though
that the node densities generally remain symmetric, with slight
variations in the details.

In a second step, the refinement of the TM12 and TM21

mode is performed on the rectangular structure. The relative
eigenvalue error is compared to a uniform and a residual-based
refinement strategy. Fig. 3 shows the results. In both cases, the
new gradient-based refinement strategy (11) is superior to the
other algorithms. The advantage is clearer in the TM12-case
due to the steeper changes in the gradients of the solution (s.
Fig. 2d). It should be noted though that the error decreases
at a very large rate for all refinement strategies - the relative
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Fig. 2. Estimated errors η(yj) at the first (a), second (b) and fourth (c)
iteration step for the TM12 mode the collocation nodes are shown as blue
dots, and the newly added nodes are shown as red dots. The last figure (d)
shows the final node and field distribution Ez to yield a relative eigenvalue
error of < 10−6.
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Fig. 3. Eigenvalue error for the TM12 and TM21 mode of a rectangular
cavity. Comparison between a uniform refinement, residual-based and the
proposed residual-based extended with the gradient-based adaptive refinement
algorithms.

eigenvalue error is below 10−4 for less than ndof = 60 degrees
of freedom. The calculation time of the LAPACK solver in that
case is less than 5 ms on a standard PC.

VI. CONCLUSION

Meshless methods build a promising class of numerical
modeling techniques for electromagnetics because of the pos-
sibility of conformal and multiscale modeling capabilities
without the need of an explicit mesh topology. Due to the
excellent interpolation properties of the applied radial basis
functions very accurate results can be achieved for relatively
short computation times. This paper has first reviewed the
current state of the art of the RPIM method, as meshless
collocation solver for electromagnetic problem.

One of the most attractive feature of meshless method is
provided by the possibility to add, move or remove nodes of
the discretization. This opens new possibilities for optimiza-
tion, and adaptive discretization of problems, both in time and
frequency domain. In this perspective, a new gradient-based
refinement strategy has been introduced in this paper. The
proposed iterative refinement algorithm has been demonstrated
in the framework of an RPIM eigenvalue solver. Based on
a previous solution on a coarse grid, an error is estimated
on a secondary set of test locations. Test nodes with a large
error are then added to the set of collocation nodes. The
new error estimator contains a residual-based indicator and
an indicator based on the jump of the gradient between two
collocation nodes. This second estimator allows to identify
regions with rapid field variations. Numerical evaluations
showed the effectiveness of this extended refinement strategy.

Even though the refinement algorithm is formulated for the
RPIM scheme, it can be easily be adapted to other meshless
collocation eigenvalue solvers and to source problems. Other
possible applications of the presented error estimator are for a
time-domain method to dynamically adapt a node distribution
as a pulse propagates through a structure. The extended node
refinement algorithm is an important step in the development
of highly efficient and flexible meshless solvers in computa-
tional electromagnetics.
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