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Abstract— Meshless methods are a new type of numerical
schemes in computational electromagnetics, combining the ad-
vantages of conformal unstructured modeling with the flexibility
of a node distribution without an explicit mesh topology. A
scattered field formulation of the meshless Radial Point Inter-
polation Method (RPIM) is introduced for efficient simulation
of metallic structures. Scattering problems generally result in
spherically radiated wavefronts, hence truncating the compu-
tational domain with locally radial perfectly matched layers
(PML) appears more effective than with classical uniaxial PML.
Therefore, such problems can be modelled using less memory
and shorter computation times with spherical or cylindrical PML.
The scattered field RPIM formulation with radial PML is verified
in a classical scattering problem from a perfectly conducting
cylinder. A comparison with the analytical Mie solution shows
fast convergence rates which are indicative of low reflections from
the PML boundary. A convergence analysis and a study on the
PML thickness demonstrates how to extend the limits of the PML
formulation.

I. INTRODUCTION

Meshless methods are an interesting new field in compu-
tational electromagnetics, which combines the versatility of
unstructured discretization with the simplicity of a node-based
scheme. Instead of a mesh topology, electric and magnetic
fields are stored at arbitrarily distributed node locations. This
allows conformal modeling of complex structures without the
overhead associated with an explicitly defined mesh structure.
Using sophisticated local basis functions, high accuracy can
be achieved at a relatively low computational cost.

Among the various existing formulations of meshless meth-
ods, the Radial Point Interpolation Method (RPIM) for time-
domain electromagnetics is the focus of this paper. This
method has been first introduced in a two-dimensional setting
in [1] and extended to 3D in [2]. To solve some observed
long-time stability issues [3], an unconditionally stable for-
mulation has been presented in [4]. An alternative approach
using Laguerre polynomials to discretize the time variable
has been formulated in [5]. To simulate open radiation and
scattering problems, perfectly matched layers (PML) have
been introduced in [6]. The most recent developments of the
RPIM have been summarized in [7].

In this paper, a scattered field formulation for the simulation
of scattering from metallic objects is presented using radial

PML [8]. The scattered field formulation, in contrast to the
total field/scattered field formulation, imposes the conditions
of an incoming plane wave on perfectly conducting bound-
aries. It has the advantage of shorter simulation times and it
reduces the amount of power to be absorbed by the PML. The
method is verified by comparison of the results to the classical
Mie solution for the scattering from a perfectly conducting
cylinder.

II. RADIAL POINT INTERPOLATION METHOD

The RPIM scheme has been introduced initially for me-
chanical problems as an extension of the point interpolation
method with radial basis functions (RBF) [9] in a Galerkin
formulation. The local interpolation scheme was then applied
to the solution of Maxwell’s equations [1]. The interpolation of
a field value in one given point is based on the field values ue

at surrounding node locations inside a local support domain,
usually enclosing N = 8−12 neighboring nodes (in 2D). In a
point-matching scheme, a combination of radial and polyno-
mial basis functions are evaluated on the neighbor locations.
This results in a symmetrical positive-definite moment matrix

G =

(
R P
PT 0

)
(1)

with the RBFs evaluated in Ri,j = ri(xj) and the first-order
polynomial basis functions as Pi,: = [1 xi yi]. Gaussian
basis functions are a common choice for the RBFs centered
around node location xi = (xi, yi)

ri(xn) = exp

(
−αc

(
xi − xn
dc

)2
)

(2)

with a shape parameter αc and the average node distance dc.
Eventually the interpolation of a field value at the position
x = x, y can be calculated through the inversion of a small
local matrix G as

u(x) ≈ [r1(x), . . . , rN (x)]G−1ue = Ψ(x)ue, (3)

i.e. the interpolation is carried out as a linear combination of
the N surrounding field values. This interpolation fulfills the
delta property, i.e. the values at the node locations are recon-
structed perfectly. As a consequence, explicit time stepping



schemes can be implemented without the need of a matrix
inversion during the time iteration.

III. SCATTERED FIELD FORMULATION

The scattered field formulation for metallic structures is
adapted from [10], assuming an incoming broadband plane
wave signal. The total electric field Etotal in the computational
domain is determined as

Etotal = Einc + Escat. (4)

The incident plane wave Einc is a known analytical function
expressed as

Einc = exp

−( t− (x− x0)/c0 − 4σ0√
(2)σ0

)2
 ·

sin(ω(t− (x− x0)/c0)− 4σ0) (5)

for propagation in x-direction with the time variable t and
position x. The width of the pulse is determined by σ0

and a spatial offset x0 allows to place the beginning of the
pulse at the first occurrence of the metallic structure. On
the metallic objects, perfectly electrically conducting (PEC)
boundary conditions apply, which provides the necessary con-
dition for numerical computation of the scattered field Escat.
In mathematical form the total and scattered field formulation
of the transverse electric field are defined as follows

EPEC = 0 (total field formulation) (6a)
EPEC = −Einc (scattered field formulation). (6b)

Therefore, in the scattered field formulation, the source con-
ditions are applied at each point on the perfectly conducting
object, both in space and time, and the solver yields the
scattered field.

IV. RADIAL PERFECTLY MATCHED LAYERS

PML [11] are an artificial type of absorbing boundary
condition that operate on the truncating boundary of a com-
putational domain. The electromagnetic properties inside this
layer are determined such that the material is matched to the
surrounding medium (often free space). The electric and mag-
netic conductivities of the material are usually progressively
increased towards the outer boundary in a polynomial profile
to minimize numerical reflections. The original formulation
exploited the uniaxial grid of the finite-difference time-domain
(FDTD) method and therefore was placed along coordinate
axes. In many scattering and radiation problems though, spher-
ical waves have to be absorbed from the boundary which leads
to unnecessary reflection from the uniaxial PML. Hence, an
approximate spherical/radial formulation was introduced for
the finite-volume time-domain method [12] which applied a lo-
cal coordinate transformation. This approach has the advantage
of avoiding the computation of convolutions and requires only
a few additional operations due to the local transformation.

For a two-dimensional transverse-electric case, the update
equations of the radial PML based on a Maxwellian ab-
sorber [13] take the following form [14]:

∂tHx =− 1

µ
∂yEz + ζrHy cosϕ sinϕ− ζrHx sin2 ϕ

−Kr cosϕ (7a)

∂tHy =
1

µ
∂xEz + ζrHx cosϕ sinϕ− ζrHy cos2 ϕ−Kr sinϕ

(7b)

∂tEz =
1

ε
[∂xHy − ∂yHx]− ζrEz (7c)

∂tKr =
1

µ
[−ζr sinϕ∂xEz + ζr cosϕ∂yEz] . (7d)

The conductivity is determined through the radially dependent
parameter ζr. The angular axis position ϕ, defined with respect
to the x-axis, is a result of the coordinate transformation.

The additionally introduced magnetic polarization variable
Kr is solved in the differential equation (7d). A method
to solve this set of equations in a leap-frog time-stepping
scheme for staggered time-domain meshless methods has
been introduced in [8]. For the simulations presented in the
following, the incoming plane wave (5) is imposed on the PEC
and the computational domain is enclosed by the radial PML.

V. NUMERICAL EXPERIMENT

To validate the formulation, 2D numerical experiments are
performed considering the scattering from a PEC cylinder.
This problem is challenging for the FDTD method, as starcas-
ing effects hinder the convergence of the numerical solutions.
For the meshless RPIM scheme, conformal placement of the
nodes allows an accurate modeling of the structure. In the
following, a convergence study is performed and the impact
of the PML thickness is estimated.

A. Mie Scattering

The scattering from cylindrical objects is a well-known
problem in classical electromagnetics with an analytical solu-
tion derived by Mie [15]. The scattered transverse electric field
at positions (ρ, θ) from a cylinder with radius R is determined
as [16]

Ethscat(ρ, θ) = −E0

∞∑
n=−∞

j−n
Jn(kR)

H
(2)
n (kR)

H(2)
n (kρ)e−jnθ (8)

for an incident plane wave of wave number k and amplitude
E0. The expression contains the Bessel function of the first
kind Jn(x) and the Hankel function H

(2)
n (x) of the second

kind.
In this paper, a cylinder with a radius of R = 0.2 m

is illuminated by a plane wave pulse with a half-power
bandwidth within f = [2, 6] GHz. A cylindrical computational
domain is created with a radius of RΩ = 0.5 m, which is clad
on the inside with a PML of a thickness corresponding to
the maximum simulated wavelength d = 0.15 m. A quadratic
conductivity profile is set to a theoretical reflection coefficient
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Fig. 1. Plot of the total transverse electric field after 50, 125 and 200 time steps. Scattered fields are absorbed by the radial PML.
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Fig. 2. Total transverse electric field after the Fourier transformation at
radially distributed sensor locations for two frequencies (2 GHz and 6 GHz).
Due to the symmetry of the results, the lower frequency is shown on the upper
half plane and the higher frequency on the lower half plane.

at normal incidence of Γth = −80 dB. This parameter corre-
sponds to the accumulated absorption through the layer [11].
Transient snapshots of the total simulated electric field for a
discretization corresponding to an average node distance of
∆x = 10 mm (λmin/5) are shown in Fig. 1. The absorption
of the scattered field can be clearly observed in the PML. The
analytically defined incident plane wave is not absorbed inside
the PML, as it is only added for display purposes in the graphs.
The simulation time on a standard PC for the whole pulse to
propagate through the computational domain is less than 2 s.

For evaluation of the convergence, the scattered electric field
is recorded at a number of radially distributed sensor locations
(at radius Rsensor = 0.27 m) in the near field of the cylinder,
and then transformed into the frequency domain. Fig. 2 shows
a comparison between the numerical and theoretical (8) scat-
tered field at the edges of the simulated frequency spectrum
(f = [2, 6] GHz). A very good agreement between the two
curves is observed with slightly larger deviations at the higher
frequencies, where the discretization becomes very coarse.
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Fig. 3. Convergence of the relative maximum error of the electric field for
various node densities.

In the following, a study of the convergence behavior of the
relative maximum error over all angles θ

ε(f) =
maxθ |Ethscat(f, θ)− Enumscat (f, θ)|

maxθ |Ethscat(f, θ)|
(9)

is performed. This quantifies the error as a function of the fre-
quency for different node densities, i.e. varying discretization
in terms of wavelengths.

B. Convergence

The convergence behavior is investigated here with various
node distributions. Starting from a very coarse average node
density of ∆x = 20 mm, which corresponds to λmin/2.5 at the
highest frequency of interest, the discretization is refined up to
an average node density of ∆x = 5 mm, which corresponds
to a relative density of λmin/10. Fig. 3 shows the relative
maximum error (9) over the simulated frequency range. For
the relatively coarse discretization considered, low errors down
to ε = 10−3 can be observed.

Two effects are visible: Firstly, for increasing node densities
the error decreases as expected. All the curves run in parallel,
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Fig. 4. Relative maximum error for various thicknesses of the PML layer at
a discretization of ∆x = 10 mm.

showing a very quick convergence towards finer discretiza-
tions. Secondly, the limitations of the approximate radial PML
become visible towards the lower end of the frequency spec-
trum. Errors introduced as reflections from the PML (domain
truncation errors) can be attributed to discretization errors, i.e.
the finite number of layers to discretize the conductivity profile
and to inaccuracies due to the radius of curvature, which is
specific to this type of radial PML [12]. In the following, the
first type of truncation error is further investigated.

C. PML Thickness

Using a fixed discretization with an average node density
of ∆x = 10 mm, the thickness of the PML is increased to
reduce the numerical reflections due to the discretization of the
conductivity profile. Starting from a thin PML of a thickness
of a quarter of the maximum wavelength (d = 0.5λmax, ∼ 7
node layers), the thickness is increased up to a thickness of
d = 1.5λmax (∼ 22 node layers). The theoretical reflection
coefficient is held constant at Γth = −80 dB. The relative
maximum error for these thicknesses is shown in Fig. 4. It
can be observed that increasing the thickness clearly lowers
the reflections from the absorbing boundary, and as a result
the simulation accuracy at lower frequencies is increased. In
this situation, increasing the thickness from d = λmax (results
in Fig. 3) to d = 1.5λmax lowers the breakdown frequency
from 2.2 GHz to 1.8 GHz

VI. CONCLUSIONS

A meshless time-domain formulation has been introduced
for the scattering from metallic object based on the RPIM. In a
scattered field formulation, the source conditions are imposed
directly on perfect electric conductors. This implementation
can easily be extended to a total field/scattered field formu-
lation. Radial PML have also been implemented to allow for
an efficient conformal modeling of cylindrical structures. The
Mie scattering from a perfectly electrical conducting cylinder

has been used to validate the simulation results. Very good
accuracy could be observed at relatively coarse discretizations
and relatively low computational effort. The results showed a
fast convergence rate, up to a limit where reflections arising
from the PML start degrading the accuracy. It has been shown
that one way to reduce this effect is increasing the PML
thickness, i.e. reducing the conductivity discretization errors.
In a next step, the effect of further PML parameters, including
the radius of curvature, will be investigated.
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