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Abstract— Numerical methods applied in Cartesian grids have 
become workhorses for general purpose time-domain 
electromagnetic simulations because of their simplicity, efficiency 
and scalability. Implementations often consider specific 
treatments for curved and slanted boundaries, as well as sub-cell 
models and sub-gridding schemes. As alternative, methods based 
on unstructured discretisation, such as a tetrahedral mesh, have 
never truly become mainstream techniques despite their 
remarkable capabilities for accurate multi-scale and conformal 
modelling. This paper firstly reviews the development of a 
particular conformal time-domain method applied in tetrahedral 
meshes, namely the Finite-Volume Time-Domain method, and 
illustrates its potential for multi-scale problems in a selected 
example. The second part of the paper points out a novel class of 
methods which are amenable to conformal time-domain 
implementation on clouds of points. These so-called “meshless 
methods” do not require an explicit mesh definition, and open 
new perspectives towards future applications involving multi-
scale multi-physics problems.  

I. INTRODUCTION 

Full-wave electromagnetic (EM) simulations have become 
indispensable tools for analysis and design of devices, from 
radio-frequency equipment to optical nano-structures. In the 
last four decades, the spectacular evolutions of computing 
hardware coupled to the steady developments of powerful 
numerical algorithms have dramatically increased the size and 
complexity of EM problems that can be solved using a 
standard computer. The class of time-domain methods based 
on volume discretisation has become extremely relevant in 
today’s landscape of EM simulators. This can be explained by 
the natural capabilities of these methods for the treatment of 
transient and wideband problems involving inhomogeneous 
dispersive media, as found for example in bio-EM 
applications. Among the time-domain methods, the most 
prominent are probably the Finite Integration Technique (FIT) 
[1], the Finite-Difference Time-Domain (FDTD) method [2] 
and the Transmission Line Matrix (TLM) method [3]. Those 
techniques build the core of some of the most prominent 
commercial EM simulation tools. In their common basic 

implementation, all these methods are based on space 
discretisation with a structured hexahedral grid, exemplified 
by the well-known staggered Yee grid [4] in FDTD. One of 
the undeniable strengths of structured arrangements is their 
amenability to efficient parallelisation for computation in 
clusters and multi-core computers, or with multiple graphical 
processing units (GPUs).  

The basic structured grid arrangement, despite its 
computational efficiency, is however often challenged by 
problems including curved and slanted material interfaces. 
This has motivated the development, starting around the 
beginning of the 1990’s, of local surface treatments [5][6] for 
improved spatial convergence. Similarly, multi-scale EM 
problems, i.e. including relevant small details in a larger 
structure, have motivated the development of techniques that 
provide higher resolution locally. Among those techniques, 
graded meshes [7], sub-gridding schemes [8] and sub-cell 
models can be mentioned. Nevertheless, the complexity of 
practically relevant EM problems has grown together with the 
increasing capabilities offered by the software tools and 
computing hardware. As a consequence, the multi-scale aspect 
and complexity of geometries still provide extreme challenges 
for the methods applied in structured grids.  

In parallel to these developments aiming at generalising the 
methods in structured grids, efforts have been started in the 
early 1990’s to implement time-domain methods in 
unstructured and/or inhomogeneous meshes, either tetrahedral 
or hexahedral. These efforts have given rise to methods such 
as the Finite-Volume Time-Domain (FVTD) method [9][10], 
implementations of TLM in tetrahedral meshes [11], time-
domain implementations of the Finite-Element method [12] or 
the Discontinuous Galerkin Time-Domain (DG-TD) method 
[13]. Despite their promises for conformal and multi-scale EM 
modelling, none of these methods are considered as 
mainstream techniques. This can be arguably attributed to 
their relative complexity, and comparatively high 
computational cost for standard problems, i.e. for geometries 
involving only simple shapes and without tiny details to be 
resolved. 
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This paper reviews some of the developments that enhance 
the FVTD method’s capability for conformal and multi-scale 
problems. Despite being presented for FVTD, the featured 
techniques can be easily adapted to other conformal time-
domain methods. The descriptions are build around a 
challenging example – the simulation of the conformal 31-
antenna array for breast cancer imaging developed at the 
University of Bristol [14][15]. The second part of the paper 
points at new developments in meshless time-domain 
numerical techniques. The class of meshless methods is based 
on interpolation of fields at arbitrary node locations and 
bypasses the need of creating a costly geometrically-defined 
mesh. Despite being still in their infancy, meshless methods 
provide a new perspective for future developments in 
computational electromagnetics.  

II. FINITE VOLUME TIME-DOMAIN METHOD 

The FVTD method is based on a conservative formulation 
of Maxwell’s equations obtained through integration over a 
volume V 
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The terms on the right-hand side are numerical fluxes through 
the boundary V∂  of the volume, and n  is the normal vector 
to the surface. Among the different possible numerical 
implementations of these fluxes, the most commonly used 
algorithm is described in detail in [16], together with an 
explicit predictor-corrector time iteration. The discretised 
version of the coupled equation system (1) does not impose 
restriction on the type of volumetric mesh, as long as the 
applied time step satisfies the Courant–Friedrichs–Lewy (CFL) 
condition for stability, as elaborated in [16] for FVTD. Most 
FVTD implementations are based on a tetrahedral 
discretisation. Tetrahedral meshes can be created with strong 
inhomogeneity in cell size, i.e. using small cells to resolve 
geometrical details [17]. The tetrahedral mesh for the example 
presented next was generated with Altair HyperMesh. 

In the following, the modelling of a conformal array of 
ultra-wideband (UWB) antennas is described to showcase 
three algorithmic developments towards efficient application 
of conformal time-domain methods. The conformal array has 
been developed as part of a near-field radar imaging system 
for early detection of breast cancer [15]. The third generation 
of the system comprises 31 UWB wide-slot antennas, which 
are described in [18]. The full-wave simulation of the array 
around a breast phantom is extremely challenging by today’s 
standards. The FVTD modelling of this arrangement (shown 
in Fig. 1) has been presented in [19] for a scenario involving 
detection of a small tumour. The phantom consists of 
homogeneous dispersive breast tissue with Debye parameters 
( 10
s
ε = , 10ε

∞
= , 7τ = ps), modelled as described in [20]. 

It is covered by a 2 mm-thick dispersive skin layer 
( 37
s
ε = , 4ε

∞
= , 7.2τ = ps) and contains a non-dispersive 
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Fig. 1  Geometrical arrangement of the 31-antennna conformal array for 
breast cancer imaging. Only a part of the discretised breast phantom is shown 
in cut view. The remaining part of the tetrahedral mesh is not shown for the 
sake of visibility. The outer absorbing boundary is shown as wire frame. The 
bottom inset is a zoomed image onto one of the antennas’ surface mesh, 
illustrating the tilted port and the inhomogeneous discretisation of the fork 
feeding the wide radiating slot. 

spherical tumour ( 50
r
ε = ) with 6 mm diameter. The results 

with pulses covering the 3-10 GHz band have been validated 
through comparison with phantom measurements [19]. 

A. Local Time Steps 

The full discretisation of the considered problem includes 
22 million cells. This is only a fraction of the number of cells 
that would be required for a FDTD simulation (estimated at 
800 million cells). The relatively small number of cells in the 
FVTD model is achieved by generating a strongly 
inhomogeneous mesh, which provides a spatial refinement 
only where needed. For example, the wide slot of the UWB 
antennas is fed by a fork made out of 0.2 mm wide metal 
strips (Fig. 1, inset). A very fine mesh is required to properly 
resolve the current variations on those strips – a crucial point 
for accurate simulations. This requires at least 3 cells along 
each strip width, which translates into cell dimensions below 
/ 150ελ , where ελ  denotes the wavelength in the medium. 

Over a short distance, the typical cell dimension can grow to a 
standard discretisation of / 15ελ  to / 10ελ . 

As mentioned, the CFL criterion set the maximal time step 
granting a stable explicit time iteration. In an unstructured 
mesh, the smallest cell determines this time step. Therefore 
the resolution of small details is bound to dramatically 
decrease the time step and therefore significantly increase the 
number of iteration steps. Fortunately, this can be alleviated 
by introducing local time steps, matched to the geometrical 
inhomogeneity. An implementation of local time steps has 
been proposed in [21]. It introduced nested sub-domains 
where time steps can be incremented by a factor of 2 while 
satisfying locally the stability criterion. Only the smallest cells 
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are updated every time step, the other ones being updated 
every 2n-th step according to their size. In the present example, 
the application of local time stepping algorithm translates into 
having only 2% of the cells updated every time step, a few 
percents updated every 2nd, 4th and 8th time step, and more 
than 80 % of the cells updated only every 16th or 32nd time 
step. This relaxes the limitation associated with the explicit 
stability criterion in inhomogeneous meshes. Similar 
implementations have been described for the DG-TD method, 
e.g. in [22]. 

B. Arbitrarily Oriented Ports 

The conformal arrangement of the antennas in the array can 
be problematic for structured discretisations. In particular, the 
definition of ports with arbitrary orientations is still an open 
problem in FDTD. Port orientation can cause consistency 
problems in the simulated performance of individual antennas 
of the array. In the FVTD unstructured mesh, all ports are 
defined according to [23] and automatically rotated in space 
using standard matrix operations. All antennas in the array 
behave then identically, in the limit of the digital accuracy. 

C. Locally Conformal PML-like Absorbers 

For radiation problems, the absorbing boundary in an 
unstructured mesh does not need to take the form of a 
rectangular box. Shaping the outer boundary can be beneficial 
to reduce the size of the computational domain and/or to adapt 
absorbing surfaces to radiated wave fronts. In particular, 
antennas are often simulated in FVTD using Silver-Mueller 
absorbing boundary conditions (SM-ABC) [16]. A spherical 
outer boundary is beneficial since SM-ABC are quite efficient 
when operating close to normal incidence, despite their first-
order accuracy. Similarly, an approximate implementation of 
spherical perfectly matched layers (PML) has been introduced 
for FVTD in [24] and extended to conformal configurations in 
[25]. For the problem at hand, conformal PML are applied to a 
hemispherical truncating boundary, as shown in Fig. 1. 

D. Other Developments 

Numerous other developments of the past decade have 
aimed at increasing the efficiency of conformal time-domain 
methods. Among these developments, special source 
treatments [26] can be mentioned, or the hybridisation with 
standard techniques, e.g. with FDTD [16] or integral 
equations [27]. Finally, it is worth mentioning that several 
approaches exist for parallelisation in unstructured mesh (e.g. 
[28]). Parallelisation is clearly desired and possible despite 
being slightly less efficient and natural than for FDTD.  

One of the difficulties associated with unstructured 
discretisation is undoubtedly the mesh generation. Based on a 
digitised geometry, the creation of a mesh with acceptable 
quality for time-domain simulations often requires labour-
intensive operations from the user. In order to bypass this 
costly pre-processing stage in the modelling process, while 
retaining the advantages of an unstructured discretisation, the 
concept of meshless methods appears very attractive. An 
implementation of time-domain meshless method for 
computational electromagnetics is described in the following. 

III. MESHLESS METHODS IN TIME DOMAIN 

Meshless methods have been investigated in computational 
sciences since more than two decades [29]. The general idea is 
to solve the differential equations governing a physical effect 
on a cloud of arbitrarily located points (nodes). As particular 
flavour of meshless method, the Radial Point Interpolation 
Method (RPIM) has been introduced in computational 
electromagnetics in [30], with extension to 3D in [31]. The 
principle of RPIM is briefly summarised in the following, and 
the interested reader is directed to [32] for more details. 

A field quantity ( )u x  is approximated in RPIM using radial 
and polynomial basis functions ( )

n
r x  and ( )

m
p x  

1 1

( ) ( ) ( ) ( )
N M

n n m m
n m

u x u x a r x b p x
= =

≈ = +∑ ∑   . (2) 

The radial basis functions ( )
n
r x  (e.g. Gaussian) are evaluated 

on N nodes in the direct vicinity of the point of interest. The 
polynomials ( )

m
p x  are usually of low order. The coefficients 

n
a  and 

m
b  are determined in a point-matching procedure at 

the discretisation nodes. Once the coefficients are known, 
low-order derivatives can be directly estimated by considering 
the derivatives of the basis functions. These derivatives are 
used to solve the governing differential equations. 

The time-domain implementation of RPIM for Maxwell’s 
equations considers a staggered arrangement of E- and H-
nodes, where electric and magnetic fields are sampled, 
respectively. In this sense, RPIM can be considered as a 
generalised FDTD, and inversely, it can be shown that FDTD 
constitutes a special case of RPIM. 

RPIM shares the capability to resolve complex and multi-
scale geometries with more conventional conformal time-
domain techniques. However, it potentially brings additional 
advantages arising from the simplicity of the arbitrary node 
discretisation. These advantages concern the possibility of 
dynamic node placement/adaptation, the simplicity of 
geometry modification for optimisation purpose, and the ease 
of combination of various differential equations in multi-
physics problems.  

As example, the simulation of a substrate-integrated 
waveguide (SIW) is shown in Fig. 2 to conceptualise multi-
scale modelling in RPIM. The typical node distance is around 
20 times smaller around the metallic posts of the SIW 
compared to other places in the computational domain. 

 
Fig. 2  Two-dimensional simulation of a SIW bend using RPIM. The graph on 
the left-hand side shows the distribution of E-field nodes, with boundary 
nodes shown in red (including metallic vias and absorbing boundary), and 
source nodes in green. The graph on the right-hand side is a snapshot of the 
field distribution in the bend for a sine-modulated Gaussian pulse excitation. 
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IV. CONCLUSIONS 

This paper has reviewed some developments of numerical 
techniques for time-domain EM simulations in unstructured 
meshes. The potential for efficient multi-scale and conformal 
simulations has been illustrated through a FVTD example. 
Despite the advantages for some high-end problems, it is still 
questionable if this class of methods can be viable for general 
purpose application, because of their relatively high 
computational cost for standard problems. However, they 
surely can present an alternative for problems involving multi-
scale geometrical features. 

The second part of the paper has considered recent 
advances in meshless methods applied to EM modelling. 
Further developments will be necessary for this class of 
methods to find its place among more established techniques 
and bring new perspectives in terms of dynamic, multi-scale 
and multi-physics modelling. 
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