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Does Chaos Work
Better Than Noise?
by Maide Bucolo, Riccardo Caponetto,

Luigi Fortuna, Mattia Frasca, Alessandro Rizzo

Abstract—Chaos and random signals share the property of long term unpredictable irregular be-
havior and broad band spectrum. The aim of this paper is not to distinguish between random

and chaotic dynamics, nor to show the use of chaos, but to focus attention on how chaos and noise
help order to arise from disorder. This means to investigate the effect of the introduction of either de-
terministic chaotic or random sequences in different types of phenomena. In particular the results re-
lated to different applications, self-organization in arrays of locally coupled systems in which a cha-
otic dissymmetry is present, chaos driven optimization strategies, pattern formation in Drosophila
embryos and some new topics on game theory are treated with the aim to investigate the subject: “does
chaos work better than noise?”.

Figure 1. Chaos, depicted
with its typical structure

in phase plane, works
better than noise in a lot
of examples presented in

this paper.
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Introduction

A classical topic in studying real
world phenomena is to distinguish be-
tween chaotic and random dynamics.
Characterizing the irregular behavior
that can be caused either by determin-
istic chaos or by stochastic processes
is not an easy task to perform. More-
over, it is still an open problem to dis-
tinguish among these two types of phe-
nomena. Several time series analysis
methods have been proposed to inves-
tigate the presence of determinism in
a set of data [1]. The main difficulty is
caused  by the surprising similarity that
deterministic chaotic and random sig-
nals often show, as for example the
characteristics of broad band spectra of
both of them.

From another point of view, the
active use of chaos has been recently
widely investigated in the literature.
Particularly interesting results have
arisen in the area of secure communi-
cations [2]. Other topics of great inter-
est are those concerning chaos control
and chaotic circuit design. The inter-
est in studying the use of chaotic sys-
tems instead of random ones arises
when the theme of chaos reaches a
high interdisciplinary level involving
not only mathematicians, physicians
and engineers but also biologists,
economists and scientists from differ-
ent areas. Moreover, several studies
showed that order could arise from dis-
order in various fields (from biologi-
cal systems to condensed matter, from
neuroscience to artificial neural net-
works [3]). In these cases disorder of-
ten indicates both non-organized pat-

Maide Bucolo, Riccardo Caponetto, Luigi
Fortuna, Mattia Frasca, and Alessandro Rizzo are
with the Dipartimento Elettrico Elettronico e
Sistemistico, Università degli Studi di Catania,
Viale A. Doria 6 – I–95125 Catania, Italy. E-mail:
lfortuna@dees.unict.it

terns and irregular behavior, whereas
order is the result of self-organization
and evolution and often arises from a
disorder condition or from the pres-
ence of dissymmetries. The origin of
self-organization is faced in [4], where
starting from evolutionary theory and
discussing various key points in biol-
ogy, the idea that life exists at the edge
of chaos has been emphasized. Other
examples in which the concept of sto-
chastic driven procedures leads to “or-
dered” results are Monte Carlo and
genetic algorithms for optimization
procedures, as well as stochastic reso-
nance in which the presence of noise
improves the transmission of the infor-
mation [5].

The aim of this paper is not to dis-
tinguish between random and chaotic
dynamics, nor to show the use of
chaos, but to focus attention on how
chaos and noise help the birth of order
from disorder. This means to investi-
gate the effect of the introduction of
either deterministic chaotic or random
sequences in different types of sys-
tems: such as complex systems, opti-
mization procedures, and biological
systems. Therefore, the question that
this paper tries to discuss is: “does
chaos work better than noise?”. In
other words, which side of the balance
of Fig. 1 will prevail?

This paper addresses the question
by means of numerous multidis-
ciplinary examples. In the section Self-
Organization in Arrays of Dynamical
Systems the result of the presence of
deterministic dissymmetry is treated in
two cases: Josephson junctions and
Chua’s circuits array. In the next sec-
tion a comparison between the perfor-
mance of genetic algorithms that run
using chaotic signals and that of tradi-
tional ones is presented. Then the ef-
fect of using chaos in an example of a
random-based optimization algorithm,
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Ant Colony Optimization, is investi-
gated. Parrondo’s Paradox is consid-
ered in the next section in order to fur-
ther investigate the problem. Pattern
Formation in Drosophila Embryos is
perhaps the most fascinating example
of self-organization, and this section
presents new results showing how
chaos can be useful to find in a more
effective way the parameters for pat-
tern formation.

Self-Organization in Arrays of
Dynamical Systems

In this section topics related to the
role of a chaotic induced spatial diver-
sity versus a random one are intro-
duced in regard to the self-organizing
behavior of arrays of dynamical sys-
tems. In particular, recent results re-
lated to some particular nonlinear cir-
cuits like the Josephson junctions and
the Chua’s circuits are reported.

Arrays of Josephson Junctions

As a starting point, this section will
deal with a valuable example concern-
ing arrays of Josephson junctions. Re-
search on synchronization of arrays of
Josephson junctions has been moti-
vated by the fact that Josephson junc-
tions are effective components capable

of generating extremely fast voltage
oscillations (typically at terahertz fre-
quency); nevertheless their output
power is extremely low (typically
10 nW), making the single junction al-
most useless for most electronics ap-
plications, if it is not part of a long,
synchronized array. It has already been
shown [6] that spatial diversity helps
the tendency for self-synchronization
of the junctions: if an array of identi-
cal junctions is considered, in-phase
periodic orbits in fact exist for a cer-
tain range of the parameter set, but
they are not asymptotically stable. On
the other hand, Braiman et al. [7] also
showed that a moderate increase in the
spatial disorder of the array can lead
to significant improvements in the syn-
chronization process. The results ob-
tained parallel those obtained by the
same authors for mechanical systems
[8], such as arrays of damped, forced
pendula, in which a moderate, random,
spatial diversity introduced in the
length of the pendula enhances the
synchronization capability. In [9–11],
several experiments show that gener-
ating the spatial diversity by using a
chaotic law enhances the regulariza-
tion and the formation of patterns in
many spatially extended systems. In
particular, the same array of pendula
considered in [8] has been synchro-
nized by introducing a moderate
amount of diversity generated by cha-
otic systems.

In this section an array of non-
identical, locally connected chaotic Jo-
sephson junctions is taken into ac-
count. It is known that, under particu-
lar conditions, a single junction can
exhibit chaotic behavior. In [12] chaos
is achieved by introducing a nonlinear
effect in the junction, whereas in this
work the chaotic behavior of the single
junction is achieved by feeding the

Figure 2a. Chaotic behavior of identical
Josephson junctions.
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junction with a periodic driving bias.
The global behavior of the array is
investigated in the case of identical
junctions, where spatio-temporal
chaos emerges, and in presence of
spatial diversity, generated by either
random or chaotic law. In the latter
case, it has been confirmed that a
certain amount of disorder enhances
the self-organization capability. In
particular, in agreement with the re-
sults presented in [9–11], the intro-
duction of diversity generated by a
chaotic law leads to a further im-
provement in synchronization.

From a mathematical point of view
the array of Josephson junctions [6] can
be described by the following formula:

˙̇φ j  + aj φ̇ j  + sinφj

= I0+ k(φj + 1 – 2φj + φj–1)
+ I · sin(ωt)

j = 1, …, N (1)

where φ is the phase difference be-
tween the two quantum mechanical
wave functions of the two layers of the
junction (see Appendix), aj is a param-
eter related to the physical properties
of the junction, the term k(φj + 1 – 2φj +
φj–1) represents the coupling with the
neighboring junctions and I0 + I ·
sin(ωt) is the current bias.

Under these assumptions, when
the array consists of identical junctions
(aj = a ∀j), as time elapses, more and
more disordered spatio-temporal pat-
terns emerge, denoting a chaotic be-
havior. This can be noticed in Fig. 2(a),
where a color map codes the variable
characterizing the behavior of each
junction in terms of the variable φ ver-
sus time. The prevalence of blue in the
color map is due to the d.c. term in the
forcing torque. The evolution appears
disordered, and is in particular chaotic.
By introducing a random, symmetrical
disorder in the aj (in a range of 10–20%
of the nominal value), periodic spatio-
temporal patterns can be observed
(Fig. 2(b)). Our analysis deals now
with the effects induced by the intro-
duction of deterministic, non-orga-
nized dissymmetry, like the ones gen-
erated by a chaotic attractor. In this
experiment, a portion of a Chua’s
attractor is sampled and adequately
scaled in order to superimpose a deter-
ministic disorder in the junction pa-
rameters. The result of simulation
shows (Fig. 2(c)) that a chaotic varia-
tion on junction parameters leads the
array towards a collective organiza-
tion. Junctions in the central region of
the array are synchronized both in

Figure 2b. Self-synchronization by
random dissymmetry.

Figure 2c. Self-synchronization by non-organized
deterministic dissymmetry.
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Does Chaos Work
Better Than Noise?

space and time, oscillating with the
same frequency as the forcing current,
while in the external bands a regular
spatial wave propagates. Therefore,
spatio-temporal chaos disappeared,
leading to a periodic behavior by sim-
ply perturbing the symmetry of the
system.

Array of Chua’s Circuits

The second example reported in
this work concerns arrays of Chua’s
circuits. Interest arises on arrays of
Chua’s circuits to investigate spatio-
temporal chaos, [13, 14], propagation
of impulsive information [15], and for-
mation of spiral waves in a two-dimen-
sional circuit matrix [16].

All the works performed agree on
the fact that, for arrays constituted by
identical circuits, global behavior is
strongly affected by changes in the
connection coefficient, denoting in a
spatio-temporal context all the phe-
nomena that can be observed in the
single circuit: equilibrium states, limit
cycles, and, obviously, spatio-tempo-
ral chaos. Taking inspiration from the
previous example, an array of Chua’s
circuits [17] has been considered. The
following equation describes the k-th
cell of the array in the well known di-
mensionless form:

ẋk = αk[yk – m1xk

– 0.5(m0 – m1)[ |xk + 1| – |xk – 1| ]
+ D(xk – yk + 1)]

ẏk = xk – yk + zk + D(yk – xk + 1) (2)

żk = –βyk

A mono-dimensional array of 128
adjacent units coupled through linearFigure 3. Chua’s circuits array experiment.

Does Chaos Work
Better Than Noise?

(a) Chaotic behavior of identical circuits.

(b) Self-synchronization by random dissymmetry.

(c) Self-synchronization by non-organized
deterministic dissymmetry.
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resistors (each circuit is characterized
by parameters chosen according to
[17] to generate the Double Scroll
Chua Attractor) is taken into account,
and both a random and a determinis-
tic dissymmetry on a circuit parameter
(the αk parameter is allowed to vary in
a range of 10–20% of its nominal
value) are introduced. The parameters
k and D represent the introduced dif-
fusive coupling. As can be observed in
Fig. 3, very regular spatio-temporal
patterns emerge only when the im-
posed perturbation is chaotic, confirm-
ing the conjecture that chaos can help
systems to achieve order and synchro-
nization.

A General Remark

Even if only some specific cases of
induced spatial disorder leading to
regular patterns have been presented,
various experiments have been carried
out by the authors where the same sce-
nario has been observed. Two-dimen-
sional arrays like Cellular Nonlinear
Networks [10], arrays of Hindmarsh-
Rose neurons [18] and distributed net-
works of fuzzy dynamical systems
[19] have been also considered. In
each case a weak spatial dissymmetry
leads to self-organization, but a strong
improvement has been emphasized
when chaos is used instead of noise.

Improving Performance of
Genetic Algorithms

In this section and in the next one,
the role played by nonlinear chaotic
dynamics versus random processes in
optimization algorithms is examined.

The convergence properties of
Genetic Algorithms (GAs) [20] are
closely connected to the random se-
quence applied on genetic operators
during a run. In particular, when start-
ing some genetic optimizations with
different random sequences, experi-
ence shows that the final results may
be very close but not equal, and require
also different numbers of generations
to reach the same optimal value. The
random sequence generation algo-
rithms, on which most used GA tools
rely, usually satisfy on their own some
statistical tests like chi-square or nor-
mality. However, there are no analyti-
cal results that guarantee an improve-
ment of the performance indexes of
GA algorithms depending on the
choice of a particular random number
generator.

Chaotic systems have already been
exploited to define new operators to be
applied during genetic optimization, in
order to improve the performance of
GAs. In particular, in [21] a special
mutation operator, applied during gene
recombination and based on the logis-
tic function, is introduced showing in-
teresting results in exploration and
exploitation of GA capabilities. Also in
[22] chaotic time series are used in
DNA computing procedures. More re-
cently, in [23] chaotic sequences have

The random sequence generation algo-
rithms, on which most used GA tools rely,
usually satisfy on their own some statistical
tests like chi-square or normality. However,
there are no analytical results that guarantee
an improvement of the performance indexes
of GA algorithms depending on the choice
of a particular random number generator.



10

been used to increase population size
dynamically in order to avoid GAs’
premature convergence.

According to the conjecture intro-
duced in this work, all the random se-
quence generators in a GA are replaced
by chaotic generators, without affect-
ing the original operator definitions.
Therefore, chaotic sequences influence
the behavior of all genetic operators.
In particular, a GA uses random se-
quences for the following purposes:

• during the creation of the initial popu-
lation it is necessary to generate the
required number of individuals using
a random number generator;

• the selection algorithm is based on
the probabilistic choice of individu-
als according to their fitness; random
generators are used also in this op-
eration;

• crossover algorithms are based on
the random choice of points inside
the chromosomes or on the random
generation of bit masks;

• the mutation operator is based on the
random change of bits in chromo-
somes.

Four different types of test prob-
lems have been considered: De Joung
functions [24], an eigenvalues Linear
Matrix Inequalities problem [25], the
Iterated Prisoner Dilemma (IPD), and
the Traveling Salesman Problem
(TSP) [26].

Figure 4 shows comparisons made
on a specific performance index named
off-line performance [24], evaluated
by using different random or chaotic
sequence generators on the De Joung
function and TSP test problems. As it
can be clearly seen, best performance
is always obtained by using chaotic
generators.

An improvement has also been
obtained in terms of speed of conver-
gence of the algorithm, as illustrated
in Fig. 5.

Ant Colony Optimization
Algorithm

Recent research on ethological
systems has emphasized self-organiza-
tion in animal colonies as a crucial
point for the accomplishment of those
tasks which require a high degree of
co-ordination among workers. Ant
colonies, for example, can build nests,
feed broods, forage for food, and so on
[27]. Beyond biological interest, the

Figure 4. Comparison of performance for different random and
chaotic generators, made on (a) De Joung function f6, (b) TSP.
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computer science community has en-
visioned in these studies a powerful
source of inspiration [28] to develop
techniques to solve complex problems,
exploiting a branch of Artificial Intel-
ligence called Swarm Intelligence [29].
In this context, classical optimization
problems like the Traveling Salesman
Problem (TSP) have been faced by
taking as an underlying intelligence
model the collective intelligence of
social insect colonies like ants. In na-
ture, ant colonies find shortest routes
from nest to food and vice-versa by
laying and following pheromone trails.
TSP, which consists of finding the
shortest tour between n  cities, visiting
each one only once and ending at the
starting point, is solved by an algo-
rithm which parallels the collective ant
behavior by exploiting an artificial
pheromone. The artificial pheromone
is a paradigm to take into account the
most tracked paths; its strength is en-
forced by further visits of the route and
weakened as time elapses through an
evaporation rate. The features of the
algorithm offer the possibility of
implementation in an agent-based, dis-
tributed environment [30].

All the implementations of Ant
Colony Optimization (ACO) algo-
rithms rely on a guided random search
procedure. Instead of considering ran-
dom variables to make decisions, a
chaotic law is adopted. Performance
has been evaluated on different TSP
benchmarks by adopting several cha-
otic laws and different, well known
versions of the algorithm (Ant System,
Ant System with Elitist Strategy,
Rank-Based Ant System, Max-Min
Ant System, Ant Colony System). If
the average length of the best solution
over several trials is considered as a
comparison term, chaos and random
perform quite similarly. However, if
for each algorithm run, the best path
lengths obtained with both the algo-
rithms (chaos based and random

Figure 5. Convergence curves of several GAs with different
random and chaotic sequence generators.
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based) are compared, the results,
shown in Fig. 6, outline that in 48.8%
of the runs the logistic map works bet-
ter than the random based algorithm,
while in 22.7% of the runs the results
obtained with the two algorithms are
the same and only in 28.5% of the runs
the random based algorithm works
better than the logistic map. This re-
sult obtained on the standard bench-
mark EIL51, taken from TSPLIB [26]
and the Rank-Based Ant System, is

still valid also when other chaotic
maps are applied.

Figure 6 illustrates the perfor-
mance obtained by a dedicated visual
software developed, whose interface is
illustrated in Fig. 7.

Parrondo’s Paradox

Should chaos play a central role
also in game theory? This question is
investigated by considering Parrondo’s
Paradox. This paradox has been intro-
duced by Parrondo as a pedagogical
illustration of the Brownian ratchet. It
states that a resulting winning game
can be obtained by playing in a random
or periodic fashion two games which
are separately losing [31, 32].

The two losing games are called
Game A and Game B. Game A consists
of a coin having p as winning probabil-
ity (p < 0.5 is chosen to obtain a los-
ing game). Game B consists of two al-
ternatively played coins: if the present
played capital is multiple of a given
integer M then the coin to be played
will have a winning probability p1, oth-
erwise (the present capital is not a
multiple of M) the coin to be played
has a winning probability p2. The two

Figure 6. Comparison of performance on the TSP
by Ant Colony System Algorithm.

48.80%

22.70%

28.50%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

Logistic Same Random

RBAS: Logistic vs Random

Figure 7. Visual software tool for the chaos-based ant optimization algorithm.

(a) Map of the cities. (b) Evolution of the colony.



13

games, when played independently
from each other, are losing games if the
following conditions hold:

1 − p

p
 > 1 (3)

for Game A, and

(1 − p1)(1 − p2 )M −1

p1p2
M −1  > 1 (4)

for Game B. The paradox consists in
constructing a game in which Game A
and Game B are alternatively played
with a probability γ : this composite
game is winning.

Parrondo showed that the paradox
occurs if the following condition holds:

(1 − q1)(1 − q2 )M −1

q1q2
M −1  > 1 (5)

where q1 = γ p + (1 – γ )p1 and q2 =
γ p + (1 – γ )p2.

While in the original Parrondo’s
Paradox the strategy is based on a ran-
dom choice of one of the two games
with the probability γ , in this work this
choice is based on the value given by
a chaotic sequence. Also in this case,
many chaotic sequence generators
have been considered. Figure 8 illus-
trates the trend of the capital gained by

playing the two games separately, al-
ternated by a random law, alternated by
chaotic laws. It is evident that perfor-
mance is much increased when a cha-
otic law is adopted.

However, one of the limitations of
applying the original paradox in real
world problems, such as genetics, evo-
lution, and economics [32], is that it in-
volves only two games and one of
them is a capital dependent game. The
idea underlying the Parrondo’s Para-

Figure 7. Visual software tool for the chaos-based ant optimization algorithm.

Figure 8. Trend of capital gain in Parrondo’s Paradox (the game
parameters are: M=3; p=1/2–0.005; p1=1/10–0.005; p2=3/4–0.005).
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dox may be extended to n different
games. While for n = 3 it is still pos-
sible to find analytically the parameters
characterizing the various games (as
for example the losing probabilities of
each game when independently

played) and leading to the paradox, for
more than three games, an optimiza-
tion strategy should be used. Even in
the generalized Parrondo’s Paradox the
games are played according to a ran-
dom choice. When a chaotic choice is
performed instead of a random one, the
gain in the capital is increased. The
comparison of the results obtained
with a random choice and those ob-
tained with chaotic maps for a six games
paradox is shown in Fig. 9.

Pattern Formation in
Drosophila Embryos

In this section our study focuses on
a parameter identification procedure
where a complex nonlinear model is
involved. The traditional procedure is
based on a random sequence, while in
this section the effect of using chaos
instead of noise is examined.

The phenomenon of pattern forma-
tion in Drosophila embryos has been re-
cently studied by carrying out an analy-
sis of a mathematical model realized
by Von Dassow and colleagues [33].

Figure 9. Trend of capital gain in a six games Parrondo’s Paradox when
different strategies are adopted to choose the game to be played. The six
games are labeled as A1, A2, B1, B2, C1, C2. The capital reductions for

each game when independently played are also shown.

Figure 10. (a) Pattern of gene expressions in 8 x 2 network of cells. The brightness of
the color, arbitrarily chosen, reflects the concentration of the gene product in the cell.
(b) Graphic representation of a solution. Each parameter value is reported in a spoke

representing the logarithm scale range of the parameter.
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The model takes into account the bio-
logical elements involved in the pat-
tern formation, these elements are
products of genes (both mRNAs and
proteins). For all cells a regular hex-
agonal form is assumed. The model
consists of a set of nonlinear ordinary
differential equations describing the
interactions among the products of
genes of the Drosophila in terms of
concentrations of the components in an
indexed cell or cell face. In all 136
variables and 50 free parameters are
taken into account for each segment,
that consists of four cells. The param-
eters involved in the model have un-
known values, that can vary in a large
range (several orders of magnitude) of
biologically plausible values.

In order to deal with the high num-
ber of unknown parameters of the
model, an iterative procedure is usu-
ally set-up by randomly choosing a
candidate set of possible parameters
and performing a numerical simulation
of the model through the Java tool In-
genue [34]. This tool is built specifi-
cally to model networks of genes in-
teracting in a field of cells and provides
a user-friendly interface. Ingenue pro-
vides a procedure, called Iterator, to
explore the space of possible solutions
by comparing the patterns obtained
with those actually observed in devel-
oping Drosophila embryos.

Figure 10(a) shows the pattern of
gene expression in the cells as obtained
with the model, while Fig. 10(b) is a
graphic representation of the solutions.
This pattern closely matches the pat-
tern of the Drosophila embryo.

Usually the iterative procedure of
Ingenue makes use of random rou-
tines. A chaos guided generation of the
parameters of the model is here pro-
posed. This new approach reveals bet-
ter results than a random based choice
of the possible solutions. In a represen-

tative case after 1000 iterations the tra-
ditional random based procedure
found 3 feasible solutions, while after
the same number of iterations the
chaos guided algorithm, which ex-
ploits a tent map, found 15 feasible
solutions. Moreover, the first solution
occurs after 84 iterations with the ran-
dom based procedure, while it occurs
after 51 iterations when chaos guides
the choice of parameters.

The results obtained with different
chaotic maps (Tent map, Lozi map,
Logistic map, Lorenz peak-to-peak
dynamics) are compared as shown in
Fig. 11 on the basis of several itera-
tions starting from different initial con-
ditions. Figure 11 reports the average
number of feasible solutions found by

Figure 11. The average number of feasible solutions and the number of
solutions found in the best case by the algorithm based either on the random

generator, traditionally used in Ingenue, or on a chaotic map. The results
obtained with several chaotic maps (Tent map, Lozi map, Logistic map,

Lorenz peak-to-peak dynamics) are compared.
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Does Chaos Work
Better Than Noise?

the algorithm as well as the number of
solutions found in the best case.

Conclusions

In this work the topic of using de-
terministic chaotic signals instead of
random signals has been explored. Of-
ten the question “does chaos work bet-
ter than noise?” arises. In our experi-
ments we are encouraged to assert that
the benefits of chaos are often evident
even if a general answer cannot be for-
mulated.

Several studies have been per-
formed and only a few results have
been summarized in the paper. Our at-
tention has been devoted to two classes
of problems: the first one regards the
role of spatial diversity to control com-
plex systems in order to improve self-
organization and synchronization in
circuits and systems organization; the
second one regards in general the class
of random based optimization algo-
rithms, where random number genera-
tors are usually introduced.

In both cases an improvement has
generally been noticed when chaos

Figure 12. (a) The Lorenz peak-to-peak dynamics. (b) The Double Scroll Chua Attractor
(marks indicate the samples of the chaotic sequence generated from the chaotic attractor).

instead of random number generators
has been introduced both to generate
spatial diversities and to introduce
non-organized patterns into the imple-
mentation of numerical procedures.
Moreover, the same encouraging results
have been obtained when Parrondo
Games have been considered. A further
optimization example refers to classi-
cal pattern formation in biology, where
the introduction of a chaotic driven
search algorithm of parameter identi-
fication has been performed.

The question introduced in this
paper is still open and we hope that this
contribution will stimulate more ex-
amples either to reinforce our feeling
or to deny it.

In any case we hope to encourage
the debate in new areas of research
where, so far, only experiments and
simulations are useful to understand
complex phenomena.

Appendix

In the appendix both the equations
of the chaotic dynamical systems re-
ported in the experiments and the model

Does Chaos Work
Better Than Noise?
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of Josephson junctions are illustrated.

Chaotic Maps

Determinism, long term unpredict-
ability and high sensitivity to initial
conditions are the peculiarity of chaos.
Systems showing chaos can be both
continuous-time systems and discrete-
time maps. The chaotic sequences used
in most of our experiments have been
generated by using different well-
known chaotic maps [35], reported in
the following:

• Logistic Map

xn + 1 = 4xn(1– xn) (6)

• Tent Map

xn + 1 = 

xn

0.7
xn ≤ 0.7

1 − xn

0.3
otherwise









(7)

• Sinusoidal Map

xn + 1 = ax2
n sinxn (8)

with a = 2.3

• Gaussian Map

xn + 1 = 
0 xn = 0

1
xn

mod1 xn ≠ 0






(9)

• Lozi Map

xn + 1 = yn + 1 – a|xk| (10)

yn + 1 = bxk

with a = 1.7; b = 0.5.
Moreover, two other maps have

been used to generate chaotic se-
quences; these maps are obtained start-
ing from continuous-time chaotic sys-
tems such as the Lorenz system and
Chua’s circuit. The equations of both

chaotic oscillators are:

Lorenz system

ẋ = σ (y – x)

ẏ = rx – y – xz (11)

ż = xy – bz

Chua’s circuit

ẋ = α (y – m1x
– 0.5(m0 – m1)[|x + 1| – |x – 1|])

ẏ = x – y + z (12)

ż = –βy

with the following parameters:

σ = 10; ρ = 28; b = 8/3; α = 9; β =
14.286; m0 = –1/7; m1 = –2/7.

The peak-to-peak dynamics of the
Lorenz system has been taken into ac-
count [35], while as regards Chua’s
circuit a chaotic sequence is obtained
by the sampling of a variable of the
Double Scroll Chua Attractor [17].
Figure 12 illustrates the Lorenz peak-
to-peak dynamics and the phase plane
projection of the Double Scroll Chua
Attractor (marks indicate samples of
the chaotic sequence).

In this work the topic of using determinis-
tic chaotic signals instead of random signals
has been explored. Often the question “does
chaos work better than noise?” arises. In our
experiments we are encouraged to assert that
the benefits of chaos are often evident even
if a general answer cannot be formulated.
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The Josephson Junction Model

The physics underlying the Jo-
sephson effect is regulated by quantum
mechanics. Nevertheless, the dynam-
ics of a Josephson junction, constituted
by two closely spaced semiconductors
separated by a weak connection, is
usually described in classical terms.
The current flowing in a Josephson
junction consists of three main con-
tributors: the supercurrent, due to the
actual Josephson effect, the displace-
ment current, which can be modeled by
the contribution of a capacitor, and the
ordinary current, modeled by the contri-
bution of a resistor. Based on this con-
sideration, the junction model adopted in
this work is illustrated in Fig. 13.

Applying Kirchoff’s current and
voltage laws to the circuit in Fig. 13,
and exploiting the Josephson current-
phase and voltage-phase relations [35],
the following dynamical model can be
written:

layers of the junction. h represents the
Planck constant, e the charge of the elec-
tron, and Ic is a critical current, typical
of the junction considered. Moreover,
following the normalization reported
in [35], Eq. 13 can be rewritten in di-
mensionless form as follows:

d 2φ
dt2  + a

dφ
dt

 + sin φ = I (14)

The forcing signal has been chosen
to be a signal consisting of a sine cur-
rent plus a constant bias (i.e. Ib = I0 +
Isin ω t), and the following parameter
values have been assumed: I0 = 0.7155,
I = 0.4, ω = 0.25, a = 0.75.
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