THE UNIVERSITY OF ADELAIDE

EXAMINATION FOR THE DEGREE OF B.E.

NOVEMBER 1999

ADVANCED COMMUNICATION THEORY (9334)

Time: ONE and a HALF hours

(In addition, candidates are allowed ten minutes before the examination begins to read the paper.)

The use of calculators is permitted; this equipment is to be supplied by the candidate. No pre-recorded material nor calculator instruction book is permitted, and calculators with remote communication links will be barred from the examination room.

Attempt ALL 3 questions.

All questions carry equal marks; part marks are given in brackets where appropriate.

ANSWERS TO QUESTIONS SHOULD BE EXPRESSED CLEARLY AND WRITTEN LEGIBLY. THESE ASPECTS OF PRESENTATION WILL BE TAKEN INTO ACCOUNT IN ASSESSMENT.

Question 1 follows on page 2

1. Consider the random process $x(t) = A \cos(\omega_c t + \theta)$, where A and ω_c are constants, and θ is a random variable with probability density function (pdf)

$$f(\theta) = 4/\pi$$
, $-\pi/8 < \theta < \pi/8$.

- a) Find the statistical mean of x(t) by computing $E\{x(t)\}$.
- b) Find the Autocorrelation Function of x(t) by computing $R(t,\tau) = E\{x(t) | x(t+\tau)\}$
- c) From your answer in part (b) what is the variance of x(t)?
- d) What is the time average mean and time average variance of x(t)?
- e) Is x(t) a stationary process? Why or why not?

(20 marks, 4 marks per part)

- 2. Consider the pulse signal $s(t) = e^{-t}[u(t) u(t T)]$, where T is the pulse width.
- a) Sketch the impulse response, h(t), of the matched filter for detecting the presence of s(t) in additive noise.
- b) Find the shape of the output pulse when s(t) is passed through filter h(t).
- c) If white noise with Power Spectral Density $S_n(f) = N_0/2$ Watts/Hz is added to s(t), then passed through the matched filter, h(t), find the maximum Signal-to-Noise Ratio (SNR).
- d) Does the matched filter you found in this problem preserve the shape of s(t)? (20 marks, 5 marks per part)
- 3. Let a random signal, s(t), be added to noise to form the random process x(t) = s(t) + n(t). Given x(t), we desire a Minimum Mean Squared Error (MMSE) estimate of s(t) by passing x(t) through a linear filter with impulse response, h(t). Assume s(t) and n(t) are uncorrelated. The filter defined by h(t) may be non-causal.
- a) Given that s(t) is characterised by a Power Spectral Density (PSD) of

$$S_s(f) = 3/(1+2\omega^2+\omega^4)$$

and that the noise is characterised by its PSD

$$S_n(f) = 3 / (1 + \omega^2)$$

find the transfer function, H(f), for the MMSE linear filter to estimate s(t).

(15 marks)

b) Find the Minimum Squared Error for this filter.

(5 marks)