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4. 4. Random Processes & Linear SystemsRandom Processes & Linear Systems

Most of the signals in communication signals are 
random signals, since if they were deterministic 
(ie. known) there would be no point in 
transmitting them over a communication channel.

It is assumed that you have had an introduction to 
random processes previously, but the important 
relations will be revisited in this chapter. 
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A discrete random variable xi will have 
probabilities P{xi}.  A continuous random variable 
x will have a probability density function p(x).

Discrete random variable Continuous random variable
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4.1 Correlation Functions

The autocorrelation function of a signal x(t), and 
the crosscorrelation function of x(t) and y(t) are:
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E{.} is the expectation operator, which means 
taking the ensemble average.
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If the signals are real, we can ignore the complex 
conjugate on the second term.  If x(t) is in volts, 
the correlation function has dimensions of volt2.

If x(t) and y(t) are stationary, then these are 
functions only of  τ = t1 - t2.
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If the signals are ergodic, we can also find the 
correlation functions by a time average.

Exercise:  Find the time averages of cos(ωt),  
cos2(ωt),  cos(ωt) sin(ωt),  cos(ω1t) cos(ω2t) .
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Properties of correlation functions:
• Rxx(0) = E{|x(t)|2} = <|x(t)|2> = P
• |Rxx(τ)| ≤ Rxx(0)
• Rxx(−τ) = R*

xx(τ)  ie. an even function if real
• Ryx(τ) = R*

xy(−τ)
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4.2 Power Spectral Density

With signals of finite energy (pulses) we have the 
energy spectral density Gxx(f)= |X(f)|2.  For 
signals of finite power (random signals, speech, 
noise) we have a power spectral density Sxx(f).

Suppose x(t) is a finite power process.  A time 
truncated version of this is:

)T/t(rect)t(x)t(xT =
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The energy density of this signal is |XT(f)|2, so we 
can define the power spectral density as the limit 
as T →∞ of |XT(f)|2/T.   With random signals, a 
consistent limit is not reached unless we form the 
ensemble average over all possible realisations.
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However,  this is usually not a satisfactory way to 
compute the power spectral density.
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Wiener-Khinchin Theorem

This theorem states that the power spectral 
density of an ergodic signal is the Fourier 
transform of its autocorrelation function.
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The power in the signal x(t) at frequencies in the 
range f1 ≤ f  ≤ f2 is given by:
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Note that the power spectral density is always 
real and non-negative for all signals, real or 
complex.  For real signals, it is also an even 
function of frequency.
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We can also define the cross power spectral 
density as the Fourier transform of the cross 
correlation function.
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It can be shown that:

This implies that if x(t) and y(t) have no common 
frequency components (ie. Sxx(f)Syy(f) = 0), then 
x(t) and y(t) are uncorrelated.

Exercise: By considering  z(t) = a x(t) + b y(t),  
(a,b complex), and using Szz(f) ≥ 0, prove the 
above relation.
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4.3 Cyclostationary Processes

Many of the processes  in communication systems 
are not strictly stationary, but are cyclostationary.  
This means the underlying process has a periodic 
structure, and as a result statistics such as the 
mean and correlation function are periodic.

Hence when we form E{x(t) x*(t−τ)} we find the 
result is a function of both t and τ but is periodic 
in t.  If we average over t, then we get a result 
which only depends on τ.
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Example: The simplest cyclostationary process is a 
sinewave.
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We see that the second term is periodic in t and has 
an average value of zero.
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Example: Random Binary Waveform

This consists of rectangular pulses of duration T 
and amplitude ±A with equal probability and 
uncorrelated with each other.

A
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t
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We will consider the general case where the pulse 
shape is p(t), so we can write: 
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where p(t) is the pulse shape and ak = ±1 is the 
digital data.  For the previous slide we have p(t) = 
rect(t/T).  With the ak equally likely and 
uncorrelated, we have E{akar} = 1 if k = r and zero 
otherwise.
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The autocorrelation function of x(t) is:
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We note that this is periodic in t, so this is a cyclo-
stationary process.  Hence we must first average 
the correlation function over one period.
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For a rectangular pulse we have Rxx(τ)= A2 Δ (τ /T) 
and hence Sxx(f) = A2T sinc2(fT).  The bandwidth 
required is therefore approximately W = 1/T Hz.

Rxx(τ) Sxx(f)

A2 A2T

-T         0         T            τ -2/T  -1/T    0     1/T    2/T    f
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4.4 Dimensions of Power

The dimensions of the autocorrelation function of 
x(t) is V2 if x(t) is a voltage and A2 if it is a 
current.  It is common practice in communication 
theory to define the “power” of a signal x(t) as the 
average value of x2(t), which is of course actually 
the mean square value.

The power spectral density of x(t) then has the 
dimensions V2/Hz or A2/Hz.
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If the power spectral density is expressed in 
terms of W/Hz, then if x(t) is the voltage or 
current in a resistance R, we must multiply by R 
to get the power spectral density in V2/Hz, or 
divide by R to get it in A2/Hz.

Alternatively, the power spectral density in V2/Hz 
or A2/Hz is sometimes called the power spectral 
density of the signal in 1 ohm.

When we calculate power ratios, the resistance R 
cancels out, so it is not usually of interest.
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4.5 Linear Time Invariant Systems

A linear time invariant (LTIV) system can be 
described either by its impulse response h(t) or 
its  frequency response H(f) and these are a 
Fourier transform pair.

∫

∫
∞

∞−

π

∞

∞−

π−

=

=

dfe)f(H)t(h

dte)t(h)f(H

tf2j

tf2j



24ELEC ENG 4035 Communications IV 24

School of Electrical & Electronic Engineering

Consider a LTIV system with an input x(t) and an 
output y(t).  
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The time domain convolution is valid for all 
signals, but the frequency domain relation is only 
true if the Fourier transforms exist, which they 
may not (eg.  random signals usually do not have 
Fourier transforms).  However for random signals 
we have:
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To calculate power spectral density relations.

1.  Y(f) = X(f) H(f) for finite energy signals.
2. |Y(f)|2 = X(f)H(f)X*(f)H*(f) = |X(f)|2|H(f)|2

X(f)Y*(f) = X(f)X*(f)H*(f)  = |X(f)|2H*(f)
Y(f)X*(f) = X(f)H(f)X*(f)    = |X(f)|2H(f)

3.  Replace |X(f)|2 by Sxx(f), |Y(f)|2 by Syy(f)
X(f)Y*(f) by Sxy(f), Y(f)X*(f) by Syx(f)

Power spectral densities satisfy the same relations
as energy spectral densities.
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The results for more complicated situations can 
be derived in a similar way.

Exercise: Calculate Szz(f).

H1(f)

H2(f)

+

x(t)

y(t)

z(t)
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You should verify this result.  Note that this also 
shows that if signals are uncorrelated, we can 
add their power spectral densities.  Unless stated 
otherwise, power spectral densities are always 
two-sided (ie. includes negative frequencies).

Answer:
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4.6 Gaussian Noise
Many of the random signals we will consider, 
and in particular noise, will have a Gaussian 
probability density function.
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where η = E{x} is the mean value 
and σ2 = E{(x− η)2} is the variance.
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In digital systems we will be interested in the 
probability that x exceeds some value xo, and 
this is given by:
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Q(x) is the Gaussian error function: 
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A table of the Q function is provided, but some 
special values are listed below.

Q(0)        = 0.500
Q(1.645) = 0.050
Q(1.960) = 0.025

x     1.282   2.326   3.090   3.719   4.265   4.753   5.199
Q(x)   10–1       10–2        10–3        10–4        10–5        10–6        10–7
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4.7 White Noise
A signal which has Snn(f) = α = No/2 (a constant) 
for all frequencies is called white noise. Its 
autocorrelation function is Rnn(τ) = α δ(τ). 

Snn(f)                                  Rnn(τ)

α

0                 f                       0                τ
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It is usual notation to use Snn(f) = No/2, where 
No is the single-sided power spectral density of 
the noise.  In these notes I will often use α
instead of No/2.
True white noise is an idealisation since it has 
infinite bandwidth and hence infinite power.  In 
practice we encounter bandlimited white noise, 
but if its bandwidth is greater than that of the 
system to which it is applied, we can assume it 
to be white noise without error.
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Bandlimited white noise

If the noise spectral density is constant over the 
range of frequencies to which the system 
responds, then we get the same result if we 
assumed it was constant at all frequencies.

Snn(f)

Noise
System Response

α
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4.8 Noise Bandwidth
If white noise is applied to a filter H(f), the mean 
square output noise is:
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Bn is called the noise bandwidth in Hz, and is the 
bandwidth of the rectangular filter which has the 
same mean square noise at its output.

Note that bandwidth is a positive frequency 
concept (and does not include negative 
frequencies), so the integration is from 0 to ∞.

Ho is the maximum passband gain.
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Noise bandwidth of low pass and band pass filters. 
Note that bandwidth is always measured at 
positive frequencies.  

|H(f)|2 |H(f)|2

-Bn Bn f 0 Bn f
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Exercise: Show that for a low pass RC filter:
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4.9 Narrowband Noise

This looks like a sinewave with random varying 
amplitude and phase.
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The envelope r(t) and phase θ(t) [and hence the 
in-phase and quadrature components nc(t) and 
ns(t)] vary at a rate comparable to the bandwidth.
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The analytic signal for narrowband noise is
tf2j

sc oe)]t(nj)t(n[)t(n π+ +=

and note that n(t) = Re{n+(t)}.  The noise phasor is 

)t(jn)t(n)t(n~ sc +=

When we demodulate signals, it will be nc(t) or 
ns(t) which will be of interest, so we need to find 
their power spectral densities.
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Since n+(t) is obtained from n(t) by filtering with 
H(f) = 2u(f), the power spectrum of n+(t) is:

(Don’t confuse Snn
(+)(f) with the analytic signal). The 

complex conjugate of n+(t) is denoted n–(t) and has 
only negative frequencies, so its power spectrum is:

Also n+(t) and n–(t) are uncorrelated, because they 
have no common frequency components.
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Now                                                    so we have: 
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Since n+(t) and n–(t) are uncorrelated, we can add 
their power spectral densities:

Exercise: Prove the last relation.
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While this looks messy, it is simply the sum of 
the negative frequency part of Snn(f) shifted up 
by fo and the positive part shifted down by fo.

f0

f

f
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Snn(f)

Snn
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Snc,nc(f)
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If the power spectrum Snn(f) is symmetrical 
about fo, then the cross power spectrum of nc(t) 
and ns(t) disappears.  It is usually not of interest 
anyway.

If the Snn(f) = No /2, then the power spectral 
densities of nc(t) and ns(t) are both No (at all 
frequencies of interest |f| < fo).  This will be 
important when we deal with the effect of noise 
on modulated signals.
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Note that the RF noise n(t) has a power spectral 
density No/2 and bandwidth B, but nc(t) has a 
power spectral density No [which is double that 
of n(t)], and a bandwidth B/2 [which is half that 
of n(t)] and similarly for ns(t).
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Exercises: You are expected to attempt the 
following exercises in Proakis & Salehi.  
Completion of these exercises is part of the course. 
Solutions will be available later.

4.10
4.44 (Part 4 is σx

2 ≠ σy
2)

4.48
4.50
4.56


