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9. 9. Channel Capacity and CodingChannel Capacity and Coding

9.1 Discrete Channels

We have already derived the result for a discrete 
channel in Chapter 6.  For a channel with a 
symbol rate r symbols/sec,
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and the maximisation is by varying the source 
probabilities.
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9.2 Continuous Channels

Consider a continuous channel of bandwidth B in 
which the received signal is x(t) = s(t) + n(t).  
We consider samples of the signal sampled at a 
rate 2B.
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For N samples, we can calculate the sums of 
squares:
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Since both the signal and noise are random 
processes, |s|2, |n|2 and |x|2 will be random variables, 
with means equal to NPs, NPn and NPx respectively, 
and variances which become (relatively) small for 
large N.  [Ps, Pn and Px are the average powers.]
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For a Gaussian process, the standard deviation of
|x|2 is Px√(2N), so we find that for large N, |x|2 ≈
NPx and all possible received sequences x = 
[x1,x2,…,xN] effectively lie near the surface of a 
hypersphere of radius (NPx)(1/2).

For a particular signal sequence s = [s1,s2,…,sN], 
the received sequence x = [x1,x2,…,xN] will lie 
near the surface of a hypersphere of radius 
(NPn)(1/2) with centre s = [s1,s2,…,sN]. 
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A hypersphere of dimension N is the region
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It has a volume proportional to Rx
N.  

Ideally we require that the hyperspheres for each 
signal sequence not overlap, so that the signal 
sequence can be uniquely identified by 
observation of the received sequence [x1,x2,…,xN].
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The channel capacity is related to the number M of 
different signal sequences [s1,s2,…,sN] which can be 
distinguished by examining the received sequence 
[x1,x2,…,xN].  The number of such sequences is 
roughly equal to the ratio of the volumes of the |x|2
and |n|2 hyperspheres (and becomes more accurate 
as N →∞).
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since Px = Ps + Pn if s(t) and n(t) are uncorrelated.
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Hence in a time T = Nδt = N/2B seconds we can 
send log2(M) bits of information.  The channel 
capacity is the information rate which is:
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This result was first proved by Shannon in 1948 
and is called Shannon’s Theorem.  Shannon also 
proved that it was possible to transmit information 
at a rate R < C with arbitrarily small error.
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Shannon’s theorem is important in that it sets an 
upper limit to the channel capacity of any 
communication system.

In practice we can get fairly close to Shannon’s 
limit by the use of coding, but as we approach the 
limit the complexity and time delay required 
increase rapidly.

One of the counter-intuitive results of Shannon’s 
theorem is that best performance is obtained using 
an infinite bandwidth.
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However we have seen that wide band systems 
such as FM perform better than narrow band 
systems such as AM or DSBSC.

Suppose we have a baseband signal of bandwidth 
W, noise of spectral density No/2 and a channel of 
bandwidth B.  Then Pn = NoB, and we have:
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where SNRbase = Ps/NoW.  The maximum value of 
C is reached as B →∞ and Cmax = 1.44 SNRbase
W bits/sec.
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9.3 Error Detection and Correction

In order to approach Shannon’s channel capacity 
it is necessary to use coding.  If we have a 
channel with a certain error rate, then we can 
reduce this by the use of coding.

Error detection is more simple than error 
correction, since error detection only indicates 
that there is an error in a block of data without 
saying where it is, whereas error correction 
requires that the error location be known. 



14ELEC ENG 4035 Communications IV 14

School of Electrical & Electronic Engineering

If we have detected an error in a block of data, 
we can request it be transmitted.  This is called 
automatic repeat request (ARQ). 

If retransmission is impossible (eg. one way 
transmission) or impractical (eg. real time 
speech), then error control must be by forward 
error correction (FEC).

With FEC the object is to have a code from 
which the receiver can determine if an error has 
occurred, and to be able to correct it.
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9.4 Repetition and Parity Check Codes

Suppose errors occur randomly and with a bit 
error probability of Pb.  A simple error control 
strategy is to repeat each bit a number of times.

Data 1 0 1 1 0 1
Transmit 111 000 111 111 000 111

For each bit, Pb is the probability of error and Qb
= 1−Pb is the probability of being correct.
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The probability of i errors in a block of n is 
given by the binomial distribution.
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For a triple repetition code (n = 3), single or 
double errors can be detected, but a triple error 
would be undetected.  But for Pb = 10-3, P(1) = 
3×10-3, P(2) = 3 ×10-6 and P(3) = 1.0×10-9.
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For error correction, use a majority decision 
decoder.

000, 001, 010, 100 all decode to 0
111, 110, 101, 011 all decode to 1

With this decoder, single errors are corrected, but 
double or triple errors result in a decoding error.  
Hence the probability of error with correction is
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Repetition codes are not very efficient.  More 
efficient codes operate on blocks of digits rather 
than each digit separately.

A simple parity check code takes n-1 message 
digits and adds a check digit so that the overall 
parity is always even or always odd.

This code can detect single errors, but is not able 
to correct them.
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9.5 Hamming Distance

An n bit codeword can be visualised as a point in 
n dimensional space.  For repetition and parity 
check codes with n = 3, we have:

001         011

100         110 100         110

Repetition Code Parity Check Code

000                  010

001         011

101                  111
000                  010

101                  111
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Note that the repetition code vectors are separated 
further than those of the parity check code.  This 
separation is expressed in terms of Hamming 
distance, which is simply the number of positions 
where the digits are different.

eg.  X = 1 0 1
Y = 1 1 0 d(X,Y) = 2

Hamming distance is the square of the Euclidean 
distance. 
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The minimum distance dmin between code words 
determines the power of the code.

Detect s errors ⇒ d ≥ s + 1
Correct t errors ⇒ d ≥ 2t + 1
Correct t, detect s > t errors ⇒ d ≥ s + t +1

Hence a triple repetition code can detect 2 errors 
or correct 1 error (in a block of 3).  With dmin = 7,
could correct 3 errors, or correct 2 & detect 4.
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To achieve error correction, we need to add check 
digits.  These are an overhead and do not carry 
any message information.

An (n,k) block code consists of a block of n digits, 
of which k are message digits and q = n − k are 
check digits.  The code rate R is the factor by 
which the message rate is reduced. 

R  =  k / n 
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9.6 Probability of Error

For a matched filter receiver we have:

[Pcwe is the probability of a word (block) error]
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If there are t+1 errors (the most likely error 
scenario), the decoder will pick an adjacent code 
word which is distance 2t+1 away. 

Hence, 2t+1 bits will be in error, giving a bit 
error probability after correction of: 
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Example: A (15,11) block code has dmin = 3, so
t = 1 and R = 11/15.  

With Eb/α = 13 dB, the uncoded bit error rate is Pube
= Q(√20) = 3.9×10-6.

With coding, Pb = Q{√ (20 ×11/15)} = 6.4×10-5

before correction and after correction Pcbe ≈ 21Pb
2 = 

8.6×10-8.  For the same message bit rate we would 
require a higher channel bit rate.

The error correction performance improves as Eb/α
increases.
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9.7 Linear Block Codes

Block codes may be linear or non-linear.  A 
linear block code is one in which the bitwise sum 
(modulo 2) of any two code words is also a code 
word.

A code is systematic if it is formed by adding 
check digits to the message digits.

x = [m1, m2, …, mk, c1, …, cq] 
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Weight and Distance

The weight of a code word is the number of 1’s 
in it.  If x and y are two code words, then the 
Hamming distance between them is 

d(x,y) = w(x+y)

Hence if we wish to correct one error, then dmin
= 3 and all code words must have a weight of 3 
or more (except the all zeros code word).
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Matrix representation

For a systematic code:

[ ][ ]
Pm~c~

Gm~PIm~]c~m~[x~
]c~m~[]c,...,c,m,...,m[

]x,...,x,x[x~
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Ik is (k×k) unit matrix, P is a (k×q) parity 
generation matrix (all elements 0 or 1). The 
matrix G (k×n) = [Ik P] is the generator matrix.
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9.8 Hamming Codes

Hamming codes are (n,k) block codes with q ≥ 3 
check digits and n = 2q - 1.  The minimum 
distance of all Hamming codes is dmin = 3.

Example: q = 3, n = 7 so k = 4.

Note that all arithmetic is modulo 2, and adding 
is equivalent to doing a parity check.
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(We will discuss how to find a suitable P later).
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Syndrome Decoding

Decoding is conveniently carried out using a 
parity check matrix H (n×q) . With Iq (q×q) :
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The transmitted code word is      , the received 
vector     has errors, and     is a (1×q) vector 
called the syndrome, which only depends on the 
error pattern    .

There are 2n possible error patterns and only 2q

syndromes.  This simply means that we cannot 
correct all possible errors.  We choose to correct 
only the most likely, so we have maximum 
likelihood decoding.

x~

y~ s~

e~
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The most likely patterns are no errors (1) or 
single errors (n), a total of n+1, which matches 
the number of syndromes 2q.  Each of the single 
errors gives a row of the H matrix, so the rows of 
P must be different and not a row of the unit 
matrix.

Example:
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100
010
001
110
011
111
101

H

P (k×q)

Iq (q×q)
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If a code is to correct t errors, then the number 
of error patterns and check digits are:
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Example: To correct 2 errors with n = 15 
requires q ≥ 6.92, but a code may not exist 
with q = 7.



37ELEC ENG 4035 Communications IV 37

School of Electrical & Electronic Engineering

9.9 Cyclic Codes

Cyclic codes are a subclass of block codes in 
which the cyclic structure leads to simpler coders 
and decoders.

A cyclic code has the property that if      is code 
word, then all cyclic shifted versions of      are 
also a code words.

eg. [x1 x2 x3 x4] & [x2 x3 x4 x1] are code words.

x~
x~
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In general, if [x1 x2 … xn-1 xn] is a code word, 
then [x2 x3 … xn x1] is also a code word.

Code words are constructed using a generator 
polynomial G(p) of degree q, and all code word 
polynomials are multiples of G(p).

For this to be true, we require that G(p) must be 
a factor of pn + 1, although not all such factors 
lead to good codes. 
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Example: A (7,4) code has G(p) = p3 + p + 1, 
since p7 + 1 = (p3 + p + 1)(p4 + p2 + p + 1).

To design a systematic cyclic code, we have:
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Example: G(p) = p3 + p + 1, M(p) = p3 + 1.

p3M(p) = p6 +  p3 = 1 0  0  1  0  0  0

p3 p2 p1 p0 p6 p5 p4 p3 p2 p1 p0

1  0  1  1   ) 1  0  0  1  0  0  0 
1  0  1  1

1  0  0  0
1  0  1  1

1  1  0   =  C(p)

[ ]0111001x~ =
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Exercises: You are expected to attempt the 
following exercises in Proakis & Salehi.  
Completion of these exercises is part of the course. 
Solutions will be available later.

9.2
9.27


