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Applications Of Stochastic Differential
Equations In Electronics

Andrew Allison1and Derek Abbot

Centre for Biomedical Engineering (CBME) and School of Electrical & Electronic Engineering,
The University of Adelaide, SA 5005, Australia.

Abstract. We argue that the stochastic differential calculus of Itô isthe best tool for the analysis of
noise in electronic circuits. We begin by showing how the nodal and mesh equations of ordinary
circuit analysis can be extended to model the effects of thermal fluctuations. This leads to a
systematic method for formulating Langevin equations for electronic circuits. These can then be
transformed into ordinary differential equations, allowing the calculation of noise power without
the need to explicitly solve the stochastic differential equations.

We have encountered a difficult unsolved problem of noise, which arises when our technique is
applied to the standard noise model for a MOSFET. The resulting equations are singular and do not
yield to the usual algebraic manipulations. We do not appearto have enough independent equations
for the number of (apparently) independent variables. Why is it so?

Keywords: Circuit analysis, Electronics, Noise, Langevin equations, Stochastic Differential Equa-
tions
PACS: 72.70.+m, 07.50.Hp

INTRODUCTION

The traditional approach to thermal noise in circuits can betraced back to Johnson [1].
Over the years, a number of empirical techniques have been developed to estimate noise
in circuits that filter the thermal noise. Our aim is to extendthese results in a more
systematic manner.

White noise cannot be constructed as an ordinary function oftime, sayZ(t). It should
be regarded a generalised function, or “distribution” of the type described by Schwartz
[2, 3]. Since noise is a generalised function, it must appearinside an integration. Itô’s
differential equation

dXt = σ(Xt)dBt + µ(Xt)dt (1)

is really short hand for an integral equation

Xt −Xt0 =

∫ t

t0
σ(Xτ)dBτ +

∫ t

t0
µ(Xτ)dτ. (2)

We can make a finite difference approximation for a very shorttime interval∆t = t − t0:

∆Xt ≈ σ(Xt)∆Bt + µ(Xt)∆t. (3)

1 Further author information: (Send correspondence to A. Allison, School of Electrical and Electronic
Engineering, The University of Adelaide, SA 5005, Australia.) E-mail: aallison@eleceng.adelaide.edu.au,
Telephone:+61 8 8303 5283
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We can consider the behavior of a circuit over a short but finite time interval,∆t. This
interval needs to be large enough to avoid problems with physical representation, such
as infinite bandwidth, and yet short enough to represent the changing behaviour of the
system under investigation. We shall work with infinitesimal increments, of the form
of Equation 1, knowing that these are really short hand for integrals over finite time
intervals of the form of Equation 2 and we can approximate theprocess in computer
simulations using Equation 3.

We can re-write Kirchhoff’s laws for infinitesimal intervals of time to provide a single
simple systematic basis for combining noise signals and deterministic signals.

KIRCHHOFF’S CURRENT LAW

The infinitesimal version of Kirchhoff’s Current Law (KCL) is written in terms of
infinitesimal increments of electric flux (electric charge)flowing out of a node:

∑
∀k

dQk = 0. (4)

If all the contributions,dQk are deterministic, then we can integrate and get∑∀k Ik = 0,
which is the more usual form of the law. The proof of the infinitesimal form follows from
one of Maxwell’s equations [4], called Gauss’s electric law:

∮

A D · dA =
∫

v ρ · dv = Q.
This can be reduced to:∑N

k=1 dQk = dQ. The correct modelling ofdQ depends the
capacitance,C, of the surface,A, with respect to earth. The stored energy of the total
charge in the node is:U = 1

2C Q2 If we assume that the system is at thermodynamic
equilibrium then it is possible to show thatE

[ 1
2C Q2

]

= 1
2kT , which is simply the mean

energy for each degree of freedom, in a classical thermodynamic system at temperature
T . This implies thatE

[

Q2
]

= kT ·C. We regard the charge enclosed in a node as being a
normally distributed random process,Q ∼ N(0,kT ·C) and we can write∑N

k=1 dQk =√
kTC·dB. This differs from the homogeneous form of Kirchhoff’s current law, in

Equation 4. Kirchhoff’s laws are ultimately statistical and there will be small fluctuations
that can usually be ignored, as long as the circuit is well constructed and the capacitance
of the node to earth,C is small. If this is not the case, then we would need to include
the parasitic capacitance,C, in our model of the circuit. In the remainder of this paper,
we will use the homogeneous, differential form of Kirchhoff’s current law, Equation
4, where infinitesimal increments of charge are representedin the form,dQ = Idt for
deterministic currents, and also in the form,dQ = indB for noise currents.

KIRCHHOFF’S VOLTAGE LAW

The infinitesimal version of Kirchhoff’s Voltage Law (KVL) is written in terms of
infinitesimal increments of magnetic flux through a mesh:

∑
∀k

dΦk = 0. (5)
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If all the contributions,dΦk, are deterministic then we can integrate and get∑∀kVk = 0,
which is the more usual form of the law. This is equivalent to saying that electric fields
are the product of a static potential field,E = −∇V . The proof of the infinitesimal
form of Kirchhoff’s voltage law follows from one of Maxwell’s equations [4], called
Faraday’s law:

∮

λ E · dλ = − ∂
∂ t

∫

S B · dA = −∂Φ
∂ t . This can be reduced to:∑N

k=1Vkdt =

∑N
k=1 dΦk =−dΦ. The correct modelling ofdΦ depends on the physical geometry of the

current path. Specifically, we need to know the inductance,L, of the current path. The
stored energy of the total charge in the node is:U = 1

2LΦ2. If we assume that the system
is at thermodynamic equilibrium with the surroundings, then we can show thatE

[

Φ2
]

=
kT ·L. We regard the magnetic flux linked by the contour,λ , as being a normally
distributed random process,Φ∼N(0,kT ·L) and we can write∑N

k=1 dΦk = −
√

kT L·dB.
This differs from the homogeneous from of Kirchhoff’s voltage law, in Equation 5.
Kirchhoff’s laws are ultimately statistical and there willbe small fluctuations, which
can usually be ignored. If this is not the case, then we would need to include the
parasitic inductance,L, in our model of the circuit. In the remainder of this paper, we
will use the homogeneous, differential form of Kirchhoff’svoltage law, Equation 5,
where infinitesimal increments of magnetic flux are represented in the formdΦ = Vdt
for deterministic currents, and also in the form,dΦ = vndB for noise currents.

MODELS FOR RESISTORS

There are two possible linear models for thermal noise in a resistor, a Thévenin and a
Norton model, which are shown in Figure 1. The Thévenin model, Figure 1(a), places

FIGURE 1. The Thévenin model, (a), and Norton model, (b), noise modelsfor a resistor.

a noise voltage source in series with an ideal noiseless resistor. During an infinitesimal
time interval,dt, the source contributes a magnetic flux ofvndB to all circuit meshes
in which it sits. We can use the results of Johnson and Nyquist, ∆

〈

V 2
〉

= 4kT R·∆ f ,
to estimate intensity of the noise voltage,vn =

√
2kT R. The units of noise voltage are

V/
√

Hz.
The use of the constant “2” rather than “4” is due to the convention that we use for

frequency. It is consistent with widely used definitions of power spectral density and
autocorrelation functions [5, 6, 7, 8, 9] and is sometimes called the two-sided power
spectrum [9]. An interesting summary of the technicalitiesand history of spectral noise
density can be found in [10].

The Norton model, Figure 1(b), places a noise current sourcein parallel with an ideal
noiseless resistor. During an infinitesimal time interval,dt, the source contributes an
electric flux, or charge, ofdQ1 = indB to the node into which the terminal flows. A
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Downloaded 14 Nov 2012 to 129.127.28.3. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



corresponding opposite charge ofdQ2 = −indB is added at the other terminal. The
corresponding intensity of noise current isin =

√

2kT/R. The units of noise current
are A/

√
Hz.

We can write the increments of electric flux associated with aresistor asdQ = indB.
These increments of electric flux can be used directly in the differential form of KCL,
Equation 4. We can write the increments of magnetic flux associated with a resistor as
dΦ = vndB. These increments of magnetic flux can be used directly in thedifferential
form of KVL, Equation 5. We can also imagine other noise models for other devices.
These will generally have different expressions for current and voltage noise intensities,
vn andin, but the calculations will generally be of the same form as for the resistor.

A functional mapping between electrical and mechanical systems

There is a widely used functional mapping between quantities in electrical and me-
chanical systems. These can be expressed in terms of the Hamiltonian function,H ,
using Hamilton’s canonical equations [11].

Variable Electrical Quantity Mechanical Quantity

Effort Voltage,−V = +∂Φ
∂ t = −∂H

∂Q Force,+F = +d p
dt = −∂H

∂x

Flow Current,I = +∂Q
∂ t = +∂H

∂Φ Velocity, v = +dx
dt = +∂H

∂ p
Momentum Magnetic flux,Φ Momentum,p

Displacement Electric flux,Q Displacement,x

Further details of the mapping are described by Karnopp et al. [12]. There are differences
of sign in the definitions of the effort variables. These are purely due to historical
convention. The mapping applies to all equations of motion,including the Langevin
equation.

Variable Electrical Quantity Mechanical Quantity

Viscous damping force −V = −R·I +F = −α·v
Noise intensity E[vn

2] = 2kT ·R E[ fn
2] = 2kT ·α

Langevin Equation LdI +RIdt = vndBt mdv+αvdt = fndBt

This demonstrates that the resulting equations for electrical circuits are Langevin equa-
tions in the literal sense.Established results for mechanical systems can be applied di-
rectly to electrical systems, by mapping solutions to the mechanical problems into the
electrical domain. These considerations also suggest thatwe should use the generalised
coordinates,Φ andQ to describe the dynamics of electrical systems, as an analogy of
the use ofp andx for mechanical systems.

CAPACITORS AND INDUCTORS

For a fixed capacitor,C, with terminal voltage,V , and terminal current,I, we require the
following equivalent forms for increments of electric fluxdQ = CdV = Idt. This allows
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the capacitor model to be used in Norton and Thévenin models.These increments of
electric flux can be used directly in the differential form ofKCL, Equation 4.

For a fixed inductor,L, with terminal voltage,V , and terminal current,I, we require
the following equivalent forms for increments of magnetic flux dΦ = LdI = Vdt. This
allows the inductor model to be used in Norton and Thévenin models. These increments
of magnetic flux can be used directly in the differential formof KVL, Equation 5.

A ONE-DIMENSIONAL EXAMPLE OF STOCHASTIC CIRCUIT
ANALYSIS

We consider the well known case of a resistor in parallel witha capacitor [13]. This is
shown in Figure 2. We expect to find a mean-square voltage across the capacitor of,

〈

V 2〉 =
kT
C

. (6)

This is clear if we regard the voltage across the capacitor asa single degree of freedom
and apply the principle of equipartition of energy,

〈1
2CV 2

〉

= 1
2kT . We represent the

resistor using a Norton model of an noiseless resistor,R, in parallel with a noise source,
denoted byi0dB wherei0 =

√

2kT/R. We consider the nodal equation for the circuit.
We require∑dQ = 0. For the capacitor, we havedQ = CdV , whereC is the capacitance
anddV is an infinitesimal increment of voltage. For the resistor, we havedQ = V

R dt and
for the equivalent noise source in the resistor, we havedQ = i0dB, as discussed above.
The nodal equation then becomes

CdV +
1
R

Vdt = i0dB, (7)

which is the SDE for this system. It has the same form and playsexactly the same role
as the Langevin equation in statistical physics [5, 14, 15, 16].

It is possible to evaluate the infinitesimal moments impliedby a Langevin equation
and to formulate a Partial Differential Equation (PDE), describing the probability density
of an ensemble of solutions to the SDE in Equation 7. This PDE is known as the Fokker-
Planck equation [5, 17, 16]. If we could solve the Fokker-Planck equation then we could
apply operators to the solutions to calculate quantities ofinterest, such as the noise
power as a function of time,w(t). Unfortunately, this approach is cumbersome. Instead,
we suggest the application of a method described by Gubner [18], where the SDE is
transformed into a much simpler ODE in the noise power.

FIGURE 2. RC parallel circuit, with resistor,R, noise current source,iodB, and capacitor,C.
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Equation 7 can be re-written as an SDE in the narrow sense:dV = −1
RCVdt + i0

C dB.
This is of the formdV = α(t)Vdt +β (t)dB whereα(t) = α =−1/(RC) andβ (t)= β =

+i0/C =
√

2kT/(RC2). If we defineµ = E [V ] and the variance asw = E
[

(V −µ)2
]

then it can be shown [18] thatdw(t)
dt = 2α(t)w(t) + β (t)2. We have now derived an

Ordinary Differential Equation (ODE) in the variable of interest, noise power. If we
consider the steady-state situation after all transients have decayed then we havedw(t)

dt =

0, which implies thatw = E
[

(V −µ)2
]

= − β (t)2

2α(t) = kT
C , which is the classical result in

Equation 6. We did not solve the SDE directly. We only used it to derive an ODE. We did
not solve the ODE but only used it to derive an algebraic equation, which we then used
to solve for the steady state value of the noise power. We believe that this simple and
systematic method is general and should find wide application in the analysis of noise
in circuits.

NOISE MODELS FOR THE JFET

The noise model that we use here, shown in Figure 3 is the one used by Abbottet al. [19]
and is essentially a van der Ziel model [20, 9] with all noise sources referred to the input.
For a JFET, the gate currents are limited by reverse biased PNjunctions. We regard the
gate leakage current as negligible and have not included it in the model.

FIGURE 3. Noise model for a JFET. This is basically a van der Ziel model with all noise sources
referred to the input. The gate to source capacitance is represented byCgs. This model includes the
standard noise-free small signal model for a JFET. The amplifying effect of the JFET is represented
by the dependent current source,gm·Vgs. The noise is represented by two sources at the input,Vn·dB1 and
In·dB2 wheredB1 anddB2 are infinitesimal increments of Brownian motion.

ANALYSIS OF A SIMPLE JFET CIRCUIT

We use a very simple version of the Colpitts oscillator with aFET as the amplifying
element. This is shown in Figure 4. In the Colpitts topology,the chain of capacitors,C1
andC2, allows for a feedback path with high impedance and voltage amplification. If we
analyse the circuit in Figure 4, using small-signal technique, and insert the noise model
from Figure 3, then we obtain the complete small signal noisemodel for the Colpitts
oscillator, shown in Figure 5. If the circuit did not have noise sources then ordinary
mesh and nodal analysis could be performed and we obtain a standard state-variable
model [21]. With the presence of noise sources, we can still write down mesh equations.
Kirchhoff’s voltage law takes the form:∑dΦ = ∑Vdt = 0 where the contribution from
a noise voltage source would bedΦ = VndB. We obtain a mesh equation for the mesh
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FIGURE 4. Standard, large-signal, schematic circuit diagram for a Colpitts oscillator using a JFET as
the amplifying element. There are noise sources inR1, R2 andJ1.

FIGURE 5. Small signal equivalent circuit of the Colpitts oscillator, including the van der Ziel noise
model. The FET is mapped into the equivalent circuit with Source, S, Gate, G, Drain D. The earth is
represented by E. The circuit has four energy storage elements, Cgs, C1, C2 and L1. There are four
corresponding state variables,Vgs, V1, V2 and I1. Further analysis shows that only three of these are
independent. There are four noise sources,Vn·dB1, In·dB2, IR1·dB3 andIR2·dB4. The nominal output is
the drain voltage,VD.

including the Gate G and the node A,

V1 dt −Vgs dt +Vn dB1 = 0, (8)

which indicates that the state-variables,V1 andVgs are not independent. We can obtain a
mesh equation includingL1, C1 andC2,

dI1 =
1
L1

·V1 dt +
1
L1

·V2 dt. (9)

The current through the noise source,Vn dB1 is undetermined but we can regard G and
A as an enlarged node and write

I1 dt +C1 dV1+Cgs dVgs − In dB2 = 0. (10)

Finally, the source is simply a very large node

C1 dV1−C2 dV2+Cgs dVgs =
V2

R1
dt −gm Vgs dt + In dB2− IR1 dB3. (11)
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Equations 8, 9, 10 and 11 are the equations of state for this system.
The nominal output of the circuit is the drain voltage ,VD. This can be expressed with

an output equation,
VD dt = −R2 gm Vgs dt − IR2 R2 dB4. (12)

This completes the formulation of the circuit. We could solve the resulting SDEs exactly
if we could write these equations in matrix form:

dXt = A ·Xtdt +KdBt (13)

whereA is a square state-transition matrix and exp(+At) is defined,Xt is a state vector
containing the state-variables,

{

Vgs, V1, V2, I1
}

andK is a matrix that combines the
independent noise sources,{dB1,dB2,dB3,dB4}. In this case the matrix,K is square but
this does not have to be the case. There will be an explicit solution of the form:

Xt = exp(+At) ·
[

X0+exp(−At) ·K ·Bt +
∫ t

0
exp(−As) ·A ·KBsds

]

. (14)

The derivation of this solution relies on the multi-dimensional form of Itô’s lemma and
may be found in Øksendal [22]. Of course, these equations canalso be solved using
numerical methods described in the literature, see for example [3, 23].

SUMMARY AND OPEN QUESTIONS

So far, we have constructed models forL,R and C. We have devised practical and
consistent forms for Kirchhoff’s laws. We have shown that the noise equations for
electrical circuits are completely equivalent to the Langevin equations of statistical
mechanics. We have shown that explicit solution of the SDEs is not always necessary,
since we can often formulate much simpler ODEs in the variables of interest. Finally, we
have made some progress on the formulation of a practical andconsistent noise models
for a JFET.

A cursory examination of the JFET in Figure 5 circuit would suggest that the state
variables should be:{V1,V2,Vgs, I1}. There “ought” to be 4 state variables. There seem
to be 4 independent equations, 8, 9, 10 and 11, so we might expect that these equations
could be written directly in the form of Equation 13. This turns out not to be the
case, because Equation 8 is degenerate. It does not contain any explicit reference to
dV1 or dVgs and we might expect that the noise components of these variables are not
independent. We do not appear to have enough independent equations for the number of
(apparently) independent variables.

Our unsolved problem of noise is that we cannot yet implementthe noise model for
the JFET until we can put Equations 8, 9, 10 and 11 into the formof Equation 13.

It seems that the solution must ultimately depend on a reduction of the number of
state variables required to describe the circuit. We must somehow reduceV1 andVgs to
a single variable. We would then have three truly independent variables in three truly
independent equations, in the whole circuit, and the equations could be solved.

At first sight, this problem looks like it might be a simple oversight. Perhaps we
“forgot to carry the one?” If the noise source,vn·dB1 were a deterministic voltage source,
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sayV3·dt then there would be no problem. Equation 8 would reduce to an ordinary mesh
equation of the usual type,V1−Vgs +V3 = 0, and the elimination of one of the state-
variables,V1 or Vgs would be trivial. Unfortunately, the circuitdoes contain a noise
source,vn·dB1, and the mesh equation does not reduce in the usual way. We cannot
simply “cancel bydt,” as it were.

We suspect that the required reduction will depend on the unique decomposition of
semi-martingales as expounded by Doob [24]. The state-variablesV1 andVgs cannot be
independent because they do not have independent decompositions. There can only be
“one noise current” in that mesh, or can there? We would welcome correspondence on
this problem.
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