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Applications Of Stochastic Differential
Equations I n Electronics

Andrew Allisontand Derek Abbot

Centre for Biomedical Engineering (CBME) and School of Electrical & Electronic Engineering,
The University of Adelaide, SA 5005, Australia.

Abstract. We argue that the stochastic differential calculus of Itihesbest tool for the analysis of
noise in electronic circuits. We begin by showing how thealahd mesh equations of ordinary
circuit analysis can be extended to model the effects ofntaefluctuations. This leads to a
systematic method for formulating Langevin equations fectonic circuits. These can then be
transformed into ordinary differential equations, allogithe calculation of noise power without
the need to explicitly solve the stochastic differential@ipns.

We have encountered a difficult unsolved problem of noiséchvarises when our technique is
applied to the standard noise model for a MOSFET. The respdtfjuations are singular and do not
yield to the usual algebraic manipulations. We do not apfzehave enough independent equations
for the number of (apparently) independent variables. Vghi/so?

Keywords: Circuit analysis, Electronics, Noise, Langevin equatj@tschastic Differential Equa-
tions
PACS: 72.70.+m, 07.50.Hp

INTRODUCTION

The traditional approach to thermal noise in circuits canréeed back to Johnson [1].
Over the years, a number of empirical techniques have beataged to estimate noise
in circuits that filter the thermal noise. Our aim is to extahdse results in a more
systematic manner.

White noise cannot be constructed as an ordinary functidimef, sayZ(t). It should
be regarded a generalised function, or “distribution” &f thpe described by Schwartz
[2, 3]. Since noise is a generalised function, it must appeade an integration. Itd’s
differential equation

dX = 0(X)dB; + p(X)dt (1)
is really short hand for an integral equation
t t
X — X = /t 0(X;)dB; +/t p(Xe)dr. @)
0 0
We can make a finite difference approximation for a very stiore intervalAt =t —to:
OX ~ 0 (X)AB; + (XAt 3)

1 Further author information: (Send correspondence to Aiséii, School of Electrical and Electronic
Engineering, The University of Adelaide, SA 5005, Aus&glE-mail: aallison@eleceng.adelaide.edu.au,
Telephone:+61 8 8303 5283
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We can consider the behavior of a circuit over a short butdfitiihe interval At. This
interval needs to be large enough to avoid problems withiphlyeepresentation, such
as infinite bandwidth, and yet short enough to representiihaging behaviour of the
system under investigation. We shall work with infinitesinmecrements, of the form
of Equation 1, knowing that these are really short hand ftegrals over finite time
intervals of the form of Equation 2 and we can approximatepitteess in computer
simulations using Equation 3.

We can re-write Kirchhoff’s laws for infinitesimal intensabf time to provide a single
simple systematic basis for combining noise signhals aneraenistic signals.

KIRCHHOFF'S CURRENT LAW

The infinitesimal version of Kirchhoff’s Current Law (KCL} iwritten in terms of
infinitesimal increments of electric flux (electric chardleving out of a node:

;ko =0. 4)

If all the contributionsdQy are deterministic, then we can integrate andggtly = O,
which is the more usual form of the law. The proof of the infigitnal form follows from
one of Maxwell’s equations [4], called Gauss’s electric:lgyD-dA = [,p-dv= Q.
This can be reduced tcgEzlko = dQ. The correct modelling oflQ depends the
capacitanceC, of the surfaceA, with respect to earth. The stored energy of the total
charge in the node idJ = %QZ If we assume that the system is at thermodynamic
equilibrium then it is possible to show thﬁt[%Qz} = KT, which is simply the mean
energy for each degree of freedom, in a classical thermadinsystem at temperature
T. This implies thaE [QZ] = KT-C. We regard the charge enclosed in a node as being a
normally distributed random proces9,~ N(0,kT-C) and we can writez'lz‘zlko =
VvKTC-dB. This differs from the homogeneous form of Kirchhoff’'s curtdaw, in
Equation 4. Kirchhoff’s laws are ultimately statisticabathere will be small fluctuations
that can usually be ignored, as long as the circuit is welstroicted and the capacitance
of the node to earttC is small. If this is not the case, then we would need to include
the parasitic capacitancg, in our model of the circuit. In the remainder of this paper,
we will use the homogeneous, differential form of Kirchhefurrent law, Equation

4, where infinitesimal increments of charge are representéoe form,dQ = Idt for
deterministic currents, and also in the foralQ = i,dB for noise currents.

KIRCHHOFF' SVOLTAGE LAW

The infinitesimal version of Kirchhoff’s Voltage Law (KVL)siwritten in terms of
infinitesimal increments of magnetic flux through a mesh:

;d@k =0. (5
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If all the contributionsd®, are deterministic then we can integrate andygygtvi = 0,
which is the more usual form of the law. This is equivalentagisg that electric fields
are the product of a static potential fiel,= —[V. The proof of the infinitesimal
form of Kirchhoff’s voltage law follows from one of Maxwe#i’equations [4], called
Faraday's law:) E - dA = —%fsﬁ- dA = —‘Z,—?. This can be reduced tg{z‘:lvkdt =
SN, ddy = —d®. The correct modelling ad® depends on the physical geometry of the
current path. Specifically, we need to know the inductah¢cef the current path. The
stored energy of the total charge in the noddJis: id)z. If we assume that the system
is at thermodynamic equilibrium with the surroundingsrtiae can show tha [®?] =
kT-L. We regard the magnetic flux linked by the contodir, as being a normally
distributed random proces®~N(0,kT-L) and we can writg }_; d®, = —KTL-dB.
This differs from the homogeneous from of Kirchhoff's vg&law, in Equation 5.
Kirchhoff’s laws are ultimately statistical and there wié small fluctuations, which
can usually be ignored. If this is not the case, then we wowdeédnto include the
parasitic inductancd,, in our model of the circuit. In the remainder of this papee w
will use the homogeneous, differential form of Kirchhoffisltage law, Equation 5,
where infinitesimal increments of magnetic flux are reprieskm the formd® = Vdt
for deterministic currents, and also in the forhd = v,,dB for noise currents.

MODELSFOR RESISTORS

There are two possible linear models for thermal noise irs&st@r, a Thévenin and a
Norton model, which are shown in Figure 1. The Thévenin mdeiglure 1(a), places

i,dB
Irdt R yas Idt | R
+ - + -
Vrdt Vrdt
(@ (b)

FIGURE 1. The Thévenin model, (a), and Norton model, (b), noise modela resistor.

a noise voltage source in series with an ideal noiselesstoesburing an infinitesimal
time interval,dt, the source contributes a magnetic fluxwaélB to all circuit meshes
in which it sits. We can use the results of Johnson and Ny,qﬂi@t’2> = 4KTR-AT,

to estimate intensity of the noise voltagg,= v 2kTR. The units of noise voltage are
V/VHz.

The use of the constant “2” rather than “4” is due to the cotiearthat we use for
frequency. It is consistent with widely used definitions ofygr spectral density and
autocorrelation functions [5, 6, 7, 8, 9] and is sometimdkedahe two-sided power
spectrum [9]. An interesting summary of the technicalitied history of spectral noise
density can be found in [10].

The Norton model, Figure 1(b), places a noise current sdarnparallel with an ideal
noiseless resistor. During an infinitesimal time intendl, the source contributes an
electric flux, or charge, oflQ; = indB to the node into which the terminal flows. A
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corresponding opposite charge d®, = —i,dB is added at the other terminal. The
corresponding intensity of noise currentijs= 1/2kT /R. The units of noise current
are A/v/Hz.

We can write the increments of electric flux associated withsistor asiQ = i,dB.
These increments of electric flux can be used directly in ifferdntial form of KCL,
Equation 4. We can write the increments of magnetic flux dasat with a resistor as
d® = vydB. These increments of magnetic flux can be used directly irdifferential
form of KVL, Equation 5. We can also imagine other noise medet other devices.
These will generally have different expressions for curesmd voltage noise intensities,
Vh andip, but the calculations will generally be of the same form agtie resistor.

A functional mapping between electrical and mechanical systems
There is a widely used functional mapping between quastitieelectrical and me-

chanical systems. These can be expressed in terms of thdtét@an function, 77,
using Hamilton’s canonical equations [11].

Variable Electrical Quantity Mechanical Quantity

_ 400 _ _9x _,dp_ _ax

Effort \oltage,—V = +%- = —9q Force,+F = +4 = %

Flow Current] = 132 = +- 5% Velocity, v=+§ = +%%
Momentum Magnetic fluxp Momentum,p
Displacement Electric fluxQ Displacementx

Further details of the mapping are described by Karnopp Et2il There are differences
of sign in the definitions of the effort variables. These aweefy due to historical
convention. The mapping applies to all equations of motinaluding the Langevin

equation.
Variable Electrical Quantity Mechanical Quantity
Viscous damping force -V =—RI +F =—-a-v
Noise intensity E[vn?] = 2kT -R E[fn?] = 2KT - a

Langevin Equation Ldl +Rldt =v,dB; mdv+ avdt = f,dB;

This demonstrates that the resulting equations for etedteircuits are Langevin equa-

tions in the literal sense.Established results for medahisiystems can be applied di-
rectly to electrical systems, by mapping solutions to thetmeical problems into the

electrical domain. These considerations also suggestvénahould use the generalised
coordinates® andQ to describe the dynamics of electrical systems, as an analog

the use ofp andx for mechanical systems.

CAPACITORSAND INDUCTORS

For a fixed capacitof;, with terminal voltagey, and terminal current, we require the
following equivalent forms for increments of electric fldQ = CdV = I dt. This allows
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the capacitor model to be used in Norton and Thévenin mod&lsse increments of
electric flux can be used directly in the differential formkaEL, Equation 4.

For a fixed inductorl., with terminal voltageV, and terminal current,, we require
the following equivalent forms for increments of magnetixftld = Ldl = Vdt. This
allows the inductor model to be used in Norton and Thévenidetw These increments
of magnetic flux can be used directly in the differential fafrKVVL, Equation 5.

A ONE-DIMENSIONAL EXAMPLE OF STOCHASTIC CIRCUIT
ANALYSIS

We consider the well known case of a resistor in parallel \&ittapacitor [13]. This is
shown in Figure 2. We expect to find a mean-square voltagessathe capacitor of,

vy =T (6)

This is clear if we regard the voltage across the capacitarsasgle degree of freedom
and apply the principle of equipartition of energ()%CV2> = %kT. We represent the
resistor using a Norton model of an noiseless resi&adn parallel with a noise source,
denoted byipdB whereig = 1/2KkT /R. We consider the nodal equation for the circuit.
We require5 dQ = 0. For the capacitor, we had® = CdV, whereC is the capacitance
anddV is an infinitesimal increment of voltage. For the resista,vavedQ = %dt and
for the equivalent noise source in the resistor, we lipe-= ipdB, as discussed above.
The nodal equation then becomes

CaV + %th = iodB, @)

which is the SDE for this system. It has the same form and @agstly the same role
as the Langevin equation in statistical physics [5, 14, 85, 1

It is possible to evaluate the infinitesimal moments implgda Langevin equation
and to formulate a Partial Differential Equation (PDE),a@sing the probability density
of an ensemble of solutions to the SDE in Equation 7. This RCBown as the Fokker-
Planck equation [5, 17, 16]. If we could solve the FokkemElkaequation then we could
apply operators to the solutions to calculate quantitiemtdrest, such as the noise
power as a function of timey(t). Unfortunately, this approach is cumbersome. Instead,
we suggest the application of a method described by Gubi@r \jdhere the SDE is
transformed into a much simpler ODE in the noise power.

V/R dt Cdv

N R CT TVt

FIGURE 2. RC parallel circuit, with resistofR, noise current sourc&dB, and capacitolC.

iodB G
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Equation 7 can be re-written as an SDE in the narrow saihée: %th + i60dB.
This is of the formdV = a(t)Vdt + 3(t)dBwherea (t) =a =—-1/(RC) andB(t) =B =
+io/C = 1/2KT /(RC2). If we definey = E V] and the variance as = E [(V — p)?]
then it can be shown [18] tha&% = 2a(t)w(t) + B(t)%. We have now derived an
Ordinary Differential Equation (ODE) in the variable of énést, noise power. If we

consider the steady-state situation after all transiemte decayed then we ha@%ﬁt—) =

0, which implies thatv = E [(V — p)?] = 750({2)3 = KT which is the classical result in
Equation 6. We did not solve the SDE directly. We only used dtd@rive an ODE. We did
not solve the ODE but only used it to derive an algebraic égnatvhich we then used
to solve for the steady state value of the noise power. We\ekhat this simple and
systematic method is general and should find wide applicatidghe analysis of noise

in circuits.

NOISE MODELSFOR THE JFET

The noise model that we use here, shown in Figure 3 is the @uEhysAbbottet al. [19]
and is essentially a van der Ziel model [20, 9] with all noiserses referred to the input.
For a JFET, the gate currents are limited by reverse biasediitions. We regard the
gate leakage current as negligible and have not includedlites model.

VadB,
+ - A b
us T Bn-Ves dt€ ;
oS

FIGURE 3. Noise model for a JFET. This is basically a van der Ziel modighwall noise sources
referred to the input. The gate to source capacitance iesepted byCgs. This model includes the
standard noise-free small signal model for a JFET. The dympdi effect of the JFET is represented
by the dependent current sourgg;Vgs. The noise is represented by two sources at the ivMauiB; and
In-dB, wheredB; anddB; are infinitesimal increments of Brownian motion.

ANALYSISOF A SIMPLE JFET CIRCUIT

We use a very simple version of the Colpitts oscillator witRET as the amplifying
element. This is shown in Figure 4. In the Colpitts topoldbeg, chain of capacitor§;
andC,, allows for a feedback path with high impedance and voltagglification. If we
analyse the circuit in Figure 4, using small-signal techeicand insert the noise model
from Figure 3, then we obtain the complete small signal noiselel for the Colpitts
oscillator, shown in Figure 5. If the circuit did not have s®isources then ordinary
mesh and nodal analysis could be performed and we obtaimédasth state-variable
model [21]. With the presence of noise sources, we can gitikwlown mesh equations.
Kirchhoff's voltage law takes the forny d® = 5 Vdt = 0 where the contribution from
a noise voltage source would be® = V,dB. We obtain a mesh equation for the mesh
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L

FIGURE 4. Standard, large-signal, schematic circuit diagram for bpi@te oscillator using a JFET as
the amplifying element. There are noise sourcdz;irR, andJ;.

VadB,

I,dBy
u A Jon)
N\
+
Ves dt :Lq
‘V'dt, - 8- Vesdt
G 11 N
1 dt If <
G + +
L. Vadt == G R, C) IridB; R, Vodt
- IrodBy ~
—E

FIGURE 5. Small signal equivalent circuit of the Colpitts oscillgtercluding the van der Ziel noise
model. The FET is mapped into the equivalent circuit with 1I8euS, Gate, G, Drain D. The earth is
represented by E. The circuit has four energy storage elsn@g, C1, C, andL;. There are four
corresponding state variablegs, Vi, V> and l1. Further analysis shows that only three of these are
independent. There are four noise sourd@siBs, 1,-dBy, Ir1-dB3 andIre-dBs. The nominal output is
the drain voltageyp.

including the Gate G and the node A,

V]_ dt 7Vgs dt +Vn dBl - 0, (8)
which indicates that the state-variablésandVgys are not independent. We can obtain a
mesh equation includinlg;, C; andCy,

d|1=i-V1 dt—Fi'Vz dt. 9
L1 L1

The current through the noise soureg dB; is undetermined but we can regard G and
A as an enlarged node and write

Finally, the source is simply a very large node

C]_ dV]_ - C2 dVZ"‘CgS dVgs - % dt - gm Vgs dt + In de - IR]_ dB3 (11)
1
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Equations 8, 9, 10 and 11 are the equations of state for thiersy
The nominal output of the circuit is the drain voltagé,, This can be expressed with
an output equation,
Vp dt = —R> gm Vis dt — Iro R> dB4. (12)

This completes the formulation of the circuit. We could sdlive resulting SDEs exactly
if we could write these equations in matrix form:

dX = A - Xdt + KdBy (13)

whereA is a square state-transition matrix and gxjt) is defined X is a state vector

containing the state—variableff:,\/gs, Vi, Vo, 11 } andK is a matrix that combines the
independent noise sourcédBg,dB,,dB3,dB4}. In this case the matriX is square but

this does not have to be the case. There will be an expliaitisol of the form:

X = exp(+At) - | Xo+exp(—At)-K -§+/Otexp(fAs)-A~K§sds . (19

The derivation of this solution relies on the multi-dimeasl form of 1td’s lemma and
may be found in Jksendal [22]. Of course, these equationsatsmbe solved using
numerical methods described in the literature, see for i@, 23].

SUMMARY AND OPEN QUESTIONS

So far, we have constructed models falR and C. We have devised practical and
consistent forms for Kirchhoff's laws. We have shown that tioise equations for

electrical circuits are completely equivalent to the Langesquations of statistical

mechanics. We have shown that explicit solution of the SBH®t always necessary,
since we can often formulate much simpler ODEs in the vaembf interest. Finally, we

have made some progress on the formulation of a practicat@amsistent noise models
for a JFET.

A cursory examination of the JFET in Figure 5 circuit wouldygast that the state
variables should be{Vy, Vo, Vgs, I1}. There “ought” to be 4 state variables. There seem
to be 4 independent equations, 8, 9, 10 and 11, so we mightetlze these equations
could be written directly in the form of Equation 13. Thisrarout not to be the
case, because Equation 8 is degenerate. It does not contaiexplicit reference to
dV; or dVgs and we might expect that the noise components of these \esiabe not
independent. We do not appear to have enough independeatt@wpifor the number of
(apparently) independent variables.

Our unsolved problem of noise is that we cannot yet implerttenoise model for
the JFET until we can put Equations 8, 9, 10 and 11 into the fafrEquation 13.

It seems that the solution must ultimately depend on a réatucf the number of
state variables required to describe the circuit. We mustesmw reducé/; andVgs to
a single variable. We would then have three truly independanables in three truly
independent equations, in the whole circuit, and the egoattould be solved.

At first sight, this problem looks like it might be a simple osight. Perhaps we
“forgot to carry the one?” If the noise soureg;dB; were a deterministic voltage source,
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sayVs-dt then there would be no problem. Equation 8 would reduce tadinary mesh
equation of the usual typ®; — Vgs+ V3 = 0, and the elimination of one of the state-
variables,V; or Vgs would be trivial. Unfortunately, the circuiloes contain a noise
source,vy-dBj, and the mesh equation does not reduce in the usual way. Wmetcan
simply “cancel bydt,” as it were.

We suspect that the required reduction will depend on thguendecomposition of
semi-martingales as expounded by Doob [24]. The statedviasV; andVgs cannot be
independent because they do not have independent decdimpssihere can only be
“one noise current” in that mesh, or can there? We would watgorrespondence on

this problem.
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