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In this paper we describe an apparent paradox concerning a moving plate capacitor driven by
thermal noise from a resistor. The plates are attracted together, but a demon restores the plates of the
capacitor to their original position when the voltage across the capacitor is small—hence only small
forces are present for the demon to work against. The demon has to work harder than this to avoid
the situation of perpetual motion, but the open question is how? This is unsolved, however we
explore the concept of a moving plate capacitor by examining the case where it is still excited by
thermal noise, but where the restoring force on the capacitor plates is provided by a simple spring
rather than some unknown demon. We display simulation results with interesting behavior,
particularly where the capacitor plates collide with each other.2@®1 American Institute of

Physics. [DOI: 10.1063/1.1394191

We consider open problems in the modeling of a noisy
moving plate capacitor from the thermodynamic and
fluctuational viewpoint. This is of interest to microelec-

tromechanical systems, such as in the modeling of the

behavior of a microaccelerometer, and is also of general
interest to the modeling of fluctuating systems.

I. THE MOVING PLATE CAPACITOR AND THE DEMON

Consider a capacitd connected in parallel to a resistor
R at a temperaturd. The time average force of attraction

between the plates of the capacitor is given by

1 dC  eA(V? 2
(Hh==5(V) g5 = 2<X2>:%’

1)

wherex is the variable distance between the plates Ansl
the plate area. We know thgl/?)=kT/C=kTx/eA and
therefore

kT

(=5 2)

If we allow the plates to freely move together frots x; to

position without doing any work. Clearly, so that we do not
violate the laws of thermodynamics, the demomst do
work equal to or greater thaW in Eq. (3). The open question

is where and how exactly is this work done. Can the work of
Szilard! for instance, be used to explain this?

Even if the voltage is not exactly zero, as long as it is
small enough, the work done in restoring the plates to their
initial position will be negligible, and the “paradox” re-
mains. Any practical circuit that detects wher=0, such as
a level-crossing detector, must be powered and hence this
power must be the source @f. But the question remains as
to the mechanism of how this exact amount of enef@y
greater)is guaranteed to be dissipated. Note that the force is
proportional to the square of the voltage, similar to the situ-
ation in Penfield’s paradéwhere the torque of a motor was
related to the square of the current.

The dependence of the force on the square of either the
voltage or the charge is an interesting situation since the
fluctuations create a net force of attraction. The capacitor
then acts as a rectifier of thermal fluctuations which is the
aspect that we will focus on in this paper. Moreover, it is
related to the old “adiabatic piston problefi*in which two
gases with different densities and temperatures, but the same

X=X, the mechanical work done by the electrostatic forcesyressure, are separated by an adiabatic wall. The gases are in

IS

X1 1
W= fxz<f>dx=§kT In (3)

X1
Xp) '

equilibrium from the point of view of classical thermody-
namics, but it is known that the fluctuations push the piston
to the cold side. The adiabatic piston problem is perhaps
more involved than the present one, since the piston acts as a

Now let us use a demon to determine when the voltagdeat conductor. Nevertheless, the two problems are related,
across the capacitor is zer&£0) and at that instant we because in both cases the system is in equilibrium from the
restore the plates to their original position. There is no forcepoint of view of thermodynamics, but evolves due to fluc-
between the plates, so they can be restored to their originaliations. The capacitor paradox is useful in the study of this
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[ ] equations in terms of the capacitor chagethe plate dis-

tance fluctuatiorx, and the plate velocity=dx/dt are
. : : dq(t) q(t)
Spring Resistor Noise __ :
A R § <D ‘ dt R T @)
1
dx(t)
4 Mass dt =u(t), (5)
S— m
X+X, Capacitor C dutt) f(q) 6
sk | T ——EX(I)—W, (6)
FIG. 1. Capacitor, mass, and spring system.
COO= sy ™
problem because this effect is achieved without the use of q?
adiabatic constraints. fla)=5_4- ®)
Note that when references are made to “paradoxes” or _ .
“demons,” in this paper, these are merdiguristic devices Here we have defineg, as the distance the plates are

used to highlighincompletenesi the present modeling of apart when the spring force is zero, axds the deviation

the system. The open question is to find sireplestdescrip- ~ from this value.

tion that completes the model, so that no apparent violations A mechanical damper was not included because the me-
occur. This is of importance for increasing our understandinghanical system is damped by its coupling to the electrical

of the modeling of fluctuating systems. system, and in addition to providing a forée=du propor-
tional to the velocityu, a damper has associated with it a

thermal noise force generator of power spectral density
1. CAPACITOR WITH A SPRING Si(f)=2kTd and this would obscure the interaction be-
) o . tween the electrical and mechanical parts of the system. The
In order to gain further appreciation of this problem, we penajty paid from a simulation point of view is that the me-
decided to consider a similar system in order to better undefspanical system is only lightly damped, and it takes a long
stand the interaction between the electrical and mechanicgine to reach equilibrium conditions.
parts. Due to the nature of the force law, this interaction is  Tpe equationgand the related Fokker—Planck equation
nonlinear. Rather than applying the restoring force via som, sec. 11) are intractable analytically, so numerical simula-
unknown means, we chose the simplest system possiblgons were used. Unfortunately the system is such that it
which is to have one plate fixed and the other moving platgakes a very long time to reach statistical equilibrium, so the
of massm attached to a spring of spring constant The  gjmylation results are only an indication of the system be-
spring now provides a restoring force to the plate. As beforg,ayvior.
a resistorR is connected in parallel with the capacitor 0 The solution of stochastic differential equations is not as
provide a source of thermal energy, ai(d) is the thermal  gyrajghtforward as for nonstochastic equatibridowever,
noise due taR with power spectral densit; (f)=2kT/R.  Rynge—Kutta methods still work for such equations, al-
To simplify matters we assume the capacitor is in a vacuuMoygh the accuracy is not as high as the order of the method
The electrical circuit could also include a series inductancemight imply for nonstochastic equations. In general, for a
but this makes the circuit more complex and its omissionstep sjzeh, an accuracy of better tha@{h>% cannot be
does not make the model invalid. The arrangement is showgptained(e.g., see Mannella in Ref)9Because the coeffi-
in Fig. 1. _ _ . cient of the stochastic termft) does not depend on the sys-
This problem then becomes very interesting as it is fullytem state, there is no difference between Ito or Stratonovich
electromechanical and has application in microelectromegg|culus.
chanical systems. For example, it is known that in microma- | the simulation a demon was not used, the object being
chined devices thermal noise in the mechanical dorfi@n  sojely to investigate the energy transfer between the electri-
Brownian motion of the moving pajtdecomes critical at  ca| and mechanical systems. The parameters were arbitrarily
these small scalésAlthough our Fig. 1 resulted from purely chosen so that the RC circuit had a 3 dB bandwidth of 2
academic inquiry of a fluctuational and thermodynamic prob-x 1% rad/s and the mechanical system was resonant %t 10
lem, it turns out that it corresponds to the equivalent circuitag/s, a frequency within the noise bandwidth of the RC
of a microaccelerometér. _ circuit. For a system in thermal equilibrium with independent
In our case, the mechanical system is undamped exceplgrees of freedom, the energy in each of the degrees of
for its coupling to the electrical system. Due to the thermakreedom would be expected to B&T. For small perturba-
noise voltage across the capacitor generated by the reBistor tjons of the capacitor plate, the mean square values, &f

a random force is applied to the mechanical system. andu=dx/dt would be
While there are difficulties in establishing the dynamical
tions for nonlinear systerhén thi the source of - o KTy KT
equations for nonlinear systerhd this case the source o F2=KTCy, 2=, 2= 9)
’ X u m ’

the fluctuationgthe resistoiR) is linear. Hence the relevant q
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FIG. 2. Simulation results for small
perturbations.
2
>
E
7]
>
=
8
s
a
(=]
-1.5 B L L L
50 100 150 200 250
Time pysec
whereCy= eAlXg. . KT
The carets are used to designate that these may not be 0~\ x+ ——, (11
the true values, as will be discussed later. 2(x+Xo)
The parameters were initially chosen wih=0.2x, so _ _
that the excursions of the capacitor plate were small com- X~ 3{—Xo+ \/XS—Zai}, (12)
pared with the plate spacing. With arbitrary choicesxgf
=0.1 mm andC,=50 pF, the other parameters are then all =—-2.04%x10"% m, (13)
determined. The values are
KT=4.0x10"2* J, where the approximation involves approximatigg by the
_o1 value expected for a constant plate spacikgx,. (The
Xp=0Y.1 mm, other solution to the quadratic equation is an unstable equi-
Co=50 pF, librium Boint);The approximation might be expected to be
valid if x and o, are both<<<x,. However, it is interesting
R=1.0x10° Q, to note that the approximate equation has no solutioxﬁ if
"2
A=1.0x10"* N/m, <20%.

It can also be observed from Eq10) that since

— —21 _ —_—
m=1.0x10 kg. X=— X, theng?<2eA\X,, which impliesqg? is finite. How-

The mechanical system is oscillatory with a frequency ofever, as discussed later, B) [from which Eq.(10) is de-
10° rad/s and although it seems that the mechanical circuit isived] is incomplete when collisions of the capacitor plates
undamped, there is a damping effect due to the interactionccur, so under those conditions the result will not be true.
with the electrical circuit. The damping mechanism is some-  For simulation purposes, E¢) was written in terms of
what obscure, and is related to the nonlinear nature of th@ormalized variablesQ=q/(}q, X=X/8’X and U=u/frq,

force law. whereo,, o ando, are defined by Eq9). A fourth-order

In the steady state, the average valuexafill not be  Rynge—Kutta integration was used with a normalized step
zero since the average force due to the noise voltage on thg,e ofh=0.01.

capacitor will cause the spring to extend slightly. This exten-  Figyre 2 shows simulation results when the system had
sionx is given by forming the ensemble average of ).  reached an apparent steady state after about 10 ms.

and solving for the displacement This gives The plates have an initial spacir)g):xol&xza soX

_ — from Eg. (13) is —0.102. For the time interval shown, the
du q° mechanical variableX andU evolved only slowly due to the

Mar~ M 2 (10)  |ack of mechanical damping, so the values are not necessar-
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ily representative of the average values. However the tim@roblent® and the solution is not obvious. Arcing due to the
average mean and variances calculated over the last 5 ms loigh electric field would not occur in a vacuum.
a 10 ms simulation were Figure 3 shows simulation results after 10 ms for the
(Q)=—0.076, aé=0.968, same system as bef_ore,_ except vh&tndmwe[e reduced by
a factor of 6.25, which increased the valueagfto 0.5x .
(X)=—0.098, 0%=0.866, The chargey was not altered at the collision point. The simu-
(U)=—0.003, 06:0-853- lation results show the plates_colliding regularly whxn

. o ) . =—Xg. Inthis caseXy=2.0 andX= —0.293 from Eq(12).

As might be expected, the oscillations in the mechanical |, the time interval shown. a “chattering” effect was
system are lightly damped with periodr2m/A s.  gpserved in which multiple collisions occurred rapidly. This

If the capacitor plz?\te. was f|2xed, for this SImula_tlon time is due to the fact that when the plates collide, the ch&@ge
the 950/3 confidence limits foog would be approximately  can become largédue to the fact that the voltage across the
0.88<0=<1.13 and for small perturbations the result might capacitor is near zero, so no charge is lost through the resis-
be expected to be similar. The confidence limits d§rand  tor). The plates bounce apart, but if the force of attraction
oy are d'ff;CU“ to estimate, but are considerably wider thaneyceeds the spring force, then the plates collide again a short
those forog because of the slow evolution sfandU (due  time |ater.
to the lack of damping). However we note that the variances | this case the time average means and variances over
are all close to the predicted values of unity, &XJ is close  gp interval of 5.0 ms were

to its predicted value of-0.102.

With &XZO.ZXO, the plates of the capacitor remain (Q)=—0.258 02=3.013
separated for most of the time and no collisions between the ' Q '

plates were observed in the simulation. Howevewrif is (X)=—0.284, 0%=0.903,
increased, it was found that the plates collided regularly. In - (y)=—0.004, 03,=0.891.
the simulation these collisions were assumed elastic so that
there is no energy loss. However it is not clear what should

happen tag. If the plates are shorted together, the chayge

iaht b ted t N On the other hand. if th gredicted value and the variances>fandU were close to
mignt be expected 1o go 1o zero. Ln the other hand, 1t ther nity, but the variance o was significantly greater than
is assumed to be an infinitesimally thin insulating sheet be-

tween the plates. theg would remain unaltered. Since the gnity. When elgstic collisions between the plates occur at
. " . . ’ timest; determined by +x,=0, Eq. (6) becomes

capacitor voltage is zero at this point, there does not seem to

be any energy implications in settirg=0, but clearly the

system will evolve differently in time. Shorting the plates du(t)

together is an “infinite capacitor—zero resistor” type dt

The main points to note are th&K) was close to its

g’(t)
2eAm

:_%X(t)_ 23 u(ty) s(t—t), (14)
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wheret; is an infinitesimally small time before the time of Ill. DISCUSSION
collisiont;. The extra term accounts for the fact that during
an elastic collision, the velocity(t) = dx/dt reverses in sign
so thatu(t;")=—u(t;"). Taking the time average of this
equation over &t<T then yields

The Fokker—Planck equation for the time varying joint
probability density functiorp=p(q,x,u;t) is

dp  J [—pd(X+xo)| d{up}
4eAm ot gl AR | T T ox
(@P(1) = —2eAN()— —— 2 u(t;). (15)
' d AX  @g? KT ¢%p
Since —xo<(x)<0 andu(t;)<0, a positive value for ol T 2eAam/PIT R a_q2:O' (16)

{(g?) is obtained. However, whether it remains bounded or

not depends on the number of plate collisions in the interval  From Egs.(4), (5) and (6) one can see that the system
(0.T) in relation toT. From considerations discussed later, itevolves exactly as a two-dimensional Brownian particle in
seems that this number may grow faster tfian the (x,q) plane, underdamped in thedirection and over-

Figure 4 shows the results of a simulation after 10 ms indamped in they direction, moving under the action of the
which g was set to zero when the plates collided. In this casepotential:
regular collisions between the plates occurred, but not the
rapid multiple collisions as seen in Fig. 3. Q% (X+%o)  AX?

The following time average means and variances over an Vix.a)= 2eA * 2 (17)

interval of 5.0 ms were obtained: o )
which is the potential energy of the system.

(Q)=-0.033, "(22:0-599’ In normalized form this is

_ 2 _
(U)=0.008, 0% =8.502. (QX)= V@) =—F—+75, (18)

The results o_btamed here are.clearlly d_nfferent from the,¢ shown in Fig. 6 foX,=2.

previous case. Since the results differ significantly from the ; .
) ) : , . Hence the Gibbs state:

theoretical values derived in the Sec. Ill, it seems that setting
g=0 at a collision is perhaps not valid. In fact, settiqg 1
=0 seems to be a Maxwell demon, since the energy in the P(Q.X,U)= Z&H T
mechanical system increases without bound.

Figure 5 shows a plot of the mean square value of thevhereZ is a normalizing constants a particular stationary
velocity U computed over consecutive intervals of lengthsolution of the Fokker—Planck equati¢i6).
250 us for the simulations of Figs. 3 and 4. In normalized form this is

: (19)

mu? )
T+V(x,q)
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Q2(1+X/X0) X2 U? for all g andu, whereas the elastic collision settiqg-0 is
PQXU)=-exp—————— 5 ~—5| (20) equivalent to the singular boundary condition:
However, Eq(16.).is not enough to determirﬁg,x,u), (= Xo,—U)=8(q) f p(q’,—Xo,u) dq’ (22)

and boundary conditions are needed at the prit-X;. —

These boundary condltlohs are t.he ma}thematlcal tranglatlo%r all g andu>0.
of the prescription used in the simulation for the collisions
between the plates of the capacitor.

The elastic collision leaving unaltered is equivalent to
the following boundary condition:

first condition is a full elastic collision with the vertical axis

particle colliding with the axisx=—xy and reinjecting it
p(q,—Xq,u)=p(q,—Xg,—U) (21)  through the origin x=—x,,q=0 with the velocity u

FIG. 6. Potential function.

In the two-dimensional Brownian particle analogy, the

X= —Xy Whereas the second one consists of taking away any
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=dx/dtreversed. We see that the second boundary condition It can be shown thap(Q)=0(Q ?) as Q—®, con-
seems natural for the capacitor, but it is very uncommon fofirming the result that the mean square valueQfs un-
a Brownian particle. bounded.

It is not hard to see that the probability distributi¢i®) A summary of the results obtained for the variaflare
is compatible with(21) but not (22). Therefore, boundary shown below. Simulation 1Fig. 2) corresponds toX,=5
condition (21) drives the system to thermodynamic equilib- (for which no collisions occurreédsimulation 2(Fig. 3) cor-
rium, as has been seen in the simulations, whereas boundamysponds toXy=2 with elastic collisions and leaving un-
condition(22) is not compatible with the Gibbs state. Bound- altered, and simulation @ig. 4) corresponds t&X,=2 with
ary condition(22) can be seen as a source of nonequilibriumelastic collisions and setting=0. The theoretical values
since settingg=0 does not add energy to the system, butwere obtained by numerical integration of the probability
does collapse the probability density function of the systemdensity functions in Eqs(23)—(25). The theoretical mean
thus reducing its entropy. It is not surprising then that thevalues agree well with the approximate analysis presented
boundary conditior{22) induces the system to act as a Max- earlier.

well demon. Simin(1)  Theory(1)  SimIn(2) SimIin(3)  Theory(2,3)
If the perturbations are smalil.e., x<Xq), the total en- xy o098 —0.107 —0.284 1.376 —0.296
ergy of the system is approximately a quadratic function ofs2 0.866 1.039 0.903 3.421 1.141

the state variables and the average energy associated with .
- . ) . Our system shares some features with the so-called
each iszkT. With larger perturbations, the total energy is not,,_ . 0 3.4
: ) . adiabatic piston problem.™* In both cases the average
a quadratic function of the state variables and hence the ay- L .
. ; orces are zero and the system is driven exclusively by fluc-
erage energy associated with each of the degrees of freedgm .. . : .
. 1 . ) . .~ uations. If the thermodynamic variables of the piston are the
is not3kT, and this was confirmed by the second simulation, ositionx of the piston and the temperatufBsand T, and
However Eq.(20) indicates thary,=1 andog="2 re- P P P B 2

: the number of particlesN; and N,, at each si f th
gardless of the parameters, the latter being a consequence oF umber of particlesN; and N, at each side of the

lisi b he ol Si in the fi imulati iston, then one can readily show that any state with
e e L U /= TaNs(L ), L beng e ttal engo e o, i

. ’ Y y nqt reacheg equilibrium state. These are neither stable nor unstable
a steady state, and it would take an extremely long time to d quilibrium states, but they are “undetermined” or “degen-
so. The second simulation confirmed that with collisions be- :

wween the platesr becomes larger as expected. The result erated,” meaning that the piston can move without any mac-
platesrq be 9 xp : sroscopic force. In the capacitor case, for 0, the potential
from the third simulation were not consistent with Eg0)

. . A V(x,q) also has a line of degenerated minimagat0. The
f,sor:t()kscc;c;?eccl;tjded that the assumption that0 at a collision difference between the two systems is that in the capacitor

g . - . roblem there are no adiabatic constraints and the system is
It is interesting to note that ds-«, it is possible for the b y

system to approach a steady state probability density funcmuch simpler as the plate moves towatrd - x, because the
tion in which the variance o) is infinite. While such distri- potentialV(x,q) has a positive slope in the direction for

. L . any nonvanishingj. Therefore any fluctuation af, indepen-
butions are somewhat counter-intuitive, they do eXistor y g y @, P

AT . o dent of its sign, induces a force pointingxe —Xg .
any finite time, however, the variance @f must be finite. 9 P 9 0
Because the system is multi-dimensional, a full numerical
solution of the Fokker—Planck equation did not seem!V.- CONCLUSIONS AND OPEN QUESTIONS

: 12
viable: » ) . We have proposed an instructive open problem in terms
From Eq.(20), the probability density functions @, X, of 3 demon and a moving plate capacitor. In an effort to
andU can be determined by integrating over the other statgnderstand the modeling of such microelectromechanical

variables. The results are systems, we have presented an analysis where the demon is
replaced with a simple restoring spring force. In this spring-
V2w Q* Qf Q? loaded version, we have pointed out similarities with both
P(Q)=—7—ex T2 e erf _X°+2_x0 ’ the well-known “adiabatic piston problem” in thermody-
0 (23)  hamics and the engineering application in the modeling of
microaccelerometers.
N X2 The central open question that remains to be solved is to
p(X)= —exy{ - —) , (24)  determine in detail what form the demon does work. Replac-
ZN1+XIXo 2 ing the demon by simple restoring spring has brought up
further open questions as follows:
1 U2 (1) It seems that setting=0 when the plates collide
p(U)= \/T—wex - 7) (25 drives the system out of equilibrium via the boundary con-
ditions, rather than the more usual situation whexglicit
where terms added to the the equations break the detailed balance.
Can a prescription or a new generalized form of the fluctua-
2 tion dissipation relation be formulated that automatically pre-
1 (= t ; ; o . I
erfo(z) = _f exp{ _ _) dt. (26) dicts whether a given boundary condition yields equilibrium
V2 )z 2 or not?
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(2) Why does settingj=0 result in ever increasing en- (9) Should radiation emission effects be included in the
ergy in the mechanical system, and where does it comenodel?
from? Would a satisfactory modeling of hayis set to zero (10) The mechanism by which the demon does work in
remove the paradox? the original capacitor and resistor system is perhaps related
(3) When there are collisions between the capacitotto the observation of the capacitor voltage, but this requires
plates, the energies associated with the various degrees ffrther investigation.
freedom do not average #kT even ifq is not set to zero.
However, even though there is a steady state solution to the
Fokker—Planck equation, sindg?) is unbounded, the en- ACKNOWLEDGMENTS
ergy associated with the capacitor tendsetd the system is
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