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Abstract
A laser beam is frequently used to characterise the optical response of GaAs
devices. It ean alter the local temperature and, in order to assess the magnitude
of this problem, we have solved the steady-state heat equation with the aid
of Kirchloff’s transformation. We find that the most coupled variable to any
wanperature increase is the power of the laser beam and conclude that, for low
power applications, heating effects can be cousidered negligible.

Introduction

Cidlinm Arsenide (GaAs) has many important optoelectronic applications. A useful
methud in characterising its optical response is with the aid of a scanning laser beam,
which moves aloug the surface of a GaAs device or chip. This technique, for example,
has been applied to thermal emission measurements (1] evaluation of lattice damage
in seniiconductors [2], or to study new photogain mechanisms in GaAs MESFETs [3].
Consequently, it s mnportant to determine if any significant local temperature increase
seenrs in the GaAs substrate; due to laser-induced heating. Only a few degrees increase
i temperature creates a significant shift in measured electrical parameters.

Our main objective Is to determine the extreme value of steady-state local tem-
periture increase of 4 GaAs chip, when a focused laser beam impinges its surface (see
Fig. 1). This paper offers o worst-case analysis, in which the scanning CW laser beam
i, in fact, considered stationary.

We assume that pure Gads is used, For the worst case, we assume perfect trans-
mission of photons through any passivation layers and zero reflection at the surface
layers of the chip. The physical parameters [4] are shown in Table 1. The indicated
absurption ceelficient, . corresponds to a 670 nin wavelength of the laser beam. The
Gas substrate has a radius, b of 1 cm, and a depth, h, of 150 ym. The power of
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Tuble 1: Gads physical parameters.

the laser beam was 1.4 W with a spot radius of 1 pm, as described in our previous
work [3]. The ambient temperature is T,=300 K.

The differential steady-state heat equation was solved with the aid of Kirchhoff’s
Transformation (3] and modified Bessel functions. Different boundary conditions (b.c.’s)
and two possible power dissipation densities were considered. A solution for practical
dimensions wis obtained,

Theory

The steady-state heat equation and Kirchhoff’s transformation.

Tuking into account the dependence of the semiconductor thermal conductivity k
on the temperature 7' the nonlinear steady-state heat equation to be solved is:

VIKT)VT) = —g(z) 1)

On the top of the chip there is negligible heat loss to the air, so we assume an
insulated boe. On the other hand, the bottom of the chip acts as a good enough heat
sink, therefore we assume it to be at constant room temperature. For the edge of the
chip, we distingnish two different b.e.'s: (1) constant temperature, for a good heat sink,
and (2) an insulated b.e. Then the b.e.’s of the heat equation are ;

(a) T=T,=300K forz=h.

(b) aT/o==0 for z = 0.
(1) T =T, forr=0.
(c2) dT/dr =0 for r = b.
Kirchhoff's transformation defines a transformed temperature U as:
T
U(TY= | klT") k' 2
()= [ KT/ 2)

where &, = k(71,). The Kirchhoff's transformation converts the nonlinear heat equation
inta i linear one, with linear boe's {()\ Due to the fact that heat transfer is radial and
svimmetrical. the new equation in eylindrical coordinates and the associated be's are:

&#U  1oU  §U
— -

o Tror a2 Y W
(a) U=10 for z = h.
(b) AC/dz=10 forz=~0.
(el) =10 for r=b.

(e2) oL fgr =00 for r=b;
©= s the transtormed power density. We considered two cases (appendix 1):




1) Constant dissipated power density, gi: we consider the average power in the
cyvhinder limited by the laser beam and the substrate (other approximations were at-
tewpted with the depth of the heat cylinder equal to 1/a, and with the average of g
or g = y{1/n) in that eylinder, but less realistic predictions for the temperature were
obitained). In this case £=0 and G = P/(wa®hk,), then:

9; = P/(wa*hk,) (4)

2) Exponential dissipated power density, go: that is £=c, and G = aP/(ra’k,).
& ol =12 [
m= “,uzk'e(' ("}

Adter the solution for (7 has been obtained, the temperature can be determined
with the appropriate inverse transformation (appendix 2).

The transformed steady-state heat equation solutions.

Nitne vcaddiated regiun
Fooobtain the temperature in the GaAs chip outside the laser beam region, we
st solve tlu- homuogencons heat eguation (ie. g° = 0). Let us name the transformed
rmmwr.ﬂ ure, [, The solution is achieved Ly using the separation of variables method,
e, Iirs)= 1. 2102,(r). Two independent ordinary differential equations resuit:
FAje2+p =0 (6)
AR, 0t +r(8B,[0r) — 7?8, =0 (7
wheee p* is i positive constant {—p® was rejected because it does not satisfy the b.c.’s).
Taking wto aceonnt boels (a) and (b)) the solution for 4, is:
lon = Fcos {p,2) (8)
o= (2—1Da/2;»n=1,2.3. ... (9)
wted Fos aconstant, On the uther hand, the solution for B, depends on whether b.c.

(e or () s seleeted, For bie. (e1) (B = By ):

Boin= ("ninfum(r) (}‘0)
Jrul.utr} — }u{pnr);‘.u{pnb) - IO{pﬂb)KO(mr) (11)

whivee € e dependent constants, £, is the modified Bessel function of the first
ke s K wouf the third kind (order »=0). For bee. (6.2} the solution, B, is:

B = Cyay fu'.!n['r} (12)
Joenl#) = Lipar K (5. 8) + 1 {pab) Ko (par) (13)

whepe 1ol A are the same modified Bessel functions mentioned above but with
wider = L ownd (g wre s dependent constants.

Plppdose we Joave tvn ditfenat plubal solutions for U, depending on which of the
v e e seheteds For boeds el and (©2) we have respectively (i = 1, 2):
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Um' o= i Dfnfm’n(r} cos {Pnz) {14}

n=1
where Dy, are n dependent constants, to be determined for every (c) b.c.

Radiated reqron

The solution 7, for the region under the laser beam, can be obtained as the sum
of the homogeneous equation solution, Uy, and a particular solution Ui, Then U} =
Uy, + Uty The homogeneous solution is solved again using the separation of variables
method: Uy = Ap(z)Bi(r). For A, we have the same b.c. as for the non-radiated
region. Then Ay (zn) = Apgn = Ay for Eqn. 8. For By the solution is:

Bﬂ‘m = Cnfo(Pnr} + FnKu(Pnr} (15)

Due to Ay(p,r) diverging when 7 — 0, then F, must be equal to 0. Therefore we have
for the global homogeneous solution: &

D‘Ihi = i C'iu-ro{pnr) cos ':pnz) (IG}
n=1

where (1 = 1,2) are constants to be determined and dependent on the (c) b.c.'s.
If we express the transformed dissipated power density g* as:

= o)
9°(z) = Y gncos(pyz) (17)
n=|
from Egn. 3 we cun obtain the particular solution Uy, as:
=+ gn
Up = 3 = cos (pn2) (18)
n=l p?l
We have for the global solution in the region exposed to the laser beam, Uy = Uppi+Uly:
& g
U = 3 [Cinlalpar) + ﬁ]cus (pnz) (19)
n=1 i

where 1=1.2 corresponds with the selected () b.c.’s.

'y Doy and gy, constants

The temperature must be continuous at the sides of the cylinder limited by the
laser benmn. We assume that the temperature does not change abruptly at this surface.

Then T and dT /dr [or r = o are continuous, These conditions for the transformed
”'“I]"‘I'il[l]n' e

Ha= U4 forr =y i=1;2 (20)
U, /0r=algjor forr=a;i=1,2 (21)

Tiking into weconnt the Modified Bessel funetions properties [7] we find that for the
bndd sinking T fed)

Thts |



Ch‘ = —-EMEL‘F.‘%M (22)
Dyq = —Rippitssl (23)

boa = gn/ (P25 (Put) Ko(pa) + Lo(paa) K, (paa)]} (24)
and py, as was defined in Eqn. 9. For the case of the insulated b.c. (.2):

C‘.‘n . h...]ﬁlg,_.a}ﬂghh 'E*'!!!e'!"ll&'!] [25’

where:

D’-’h = ,l?ﬂh b " (25)
We know that the transformed power dissipation density is given by g* from Eqn. 17:
9" =Ge ™ = 37 g 008 (Pz) (27)
m=|

For solving ¢, Eqn.27 is multiplied by cos(p,z) and integrated with respect to the
duepth, =, between (0 and h; g, gives:

an p“e*&\[_l)lrﬂ +&
el 5. e, R T . 2 28
E @R &8
Results and Discussion

Solution for practical dimensions.

Iu practical cases we have that the radius of the GaAs chip, b, can be ten thousand
times the radius of the laser beam a (b > a). A correct solution can be obtained
assuming that temperature has asymptotic behaviour (b — oo). Then [7}:

K (pub), K (pab) = 0; I(p.b), I (psb) = 00 (29)
Then both solutions for the (¢) b.c.'s are the same:
Lol — oK (paa) Lo {pur)) cos(pyz)
U= if r<a

Er:l "I'IBGKU (ﬂgf’)j] (pru ﬂ} ms[p,,z]
i roun

(30)

with py mndl g defined in Eqn. 9 and Eqn. 24,

Pl solutions for the travsformed temperature in all cases mentioned above are
in tepms of series that converge. In order to compute the result, we must chose the
pecessury punhier of steps of the series for a correct prediction.

Temperature distribution.

Il exponential power dissipation density g3, gave rise to a more realistic temperature
sependines with the parameters. as will be explained in next section. For this case we
o i Fle 2 by rempernture distribution in the substrate under the laser beam.
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Figure 20 Cunstant temperature contours uith a quiver plot of the temperature gradient
Jor yho (P =1 plb a=dlixlS m', a=1um, b=1 cm, h= 1560 um).

fur practical dimensions (see Tab. 1). The vertical lines indicate the region where the
lisser b s applied. Solid lines are constant temperature contours, The maximum
temperature i produaced at the top of the substrate and the middle of the beam,
Towe = T10,0) = 300.006 K. ie. only a 6 mK increase over room temperature.

The temperature gradient has been also represented in Fig. 2. This shows that the
temperature decreases gquickly in both directions, radially and with the depth. In fact,
wuly for a4 pn depth. or from the middle of the laser at the top of the substrate,
the fnerease of the temperature over T, is reduced to 1 mK. Then all the heating is
prawtieally st the surface, and locatsd under the laser beam.

Temperature dependence with the parameters.

In all rases, we refer 1o maxdmmn temperature at (0,0). We can see in Fig. 3 the
terperatune dependence with the laser beam radius. When the radius is reduced, the
Lepnperature ncreases lightly, and s higher for the exponential power density case.
This is duw 1o the power dissipation density increase when the radius of the laser is
redicsd amd then higher temperatures are expected. In spite of that, the temperature
inerese b5 negligilile fur the radios range of interest. The worst case was for a=0.1 ym
with 300,03 K.
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Figure 4 Tempereture dependence with the depth of the substrate h, for g3. (P=1.4
W, a=31.1 x 10% m~'  a=1 pm, b=1 cm).

The case of the temperature dependence with the substrate thickness was different
for the two power dissipation densities considered. In Fig. 4 we can see the depen-
dence for the exponential density, g3. The higher the thickness of the substrate, the
higher the temperature. This is due to more absorbed photons, contributing to the
temperature inerease, When the thickness is high enough, practically all photons have
heen absorbod and then the temperature tends to be constant. Due to photons being
absorbed inovery short depth (63% of them are absorbed within a depth of 1/a=0.32
), the temperature dependence with the thickness can be neglected. The maximum
temperature was only 0.2 ml$ higher than for practical dimensions (A = 150 pm) -
henee the effect of thicker I ean be ignored at low laser powers.

When the power dissipated was assumed constant, using gf, the temperature unre-
alistieally deereases, s the thickness is increased - this is because the power is evenly
distributed over @ greater volume.

The most important temperature dependence is with the power, As the transformed
temperature L7 iy proportional to the power, the temperature dependence is indepen-
dent of the power density selected. We can see in Fig. 5 that when the power of the
[ser beam is less than 1 mAW there is little increase in the temperature (Tm:=3(}0.1
K1, but for higher power there is a quadratic temperature dependence (the linear ap-

TR

Figare T 1 mpe rabure dopendence with the power of the laser beam. (¢=31.1 % 16° m™,

=1 g, =T o, t=2310 i)
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proximation can be assumed only for low power). The model predicts melting of the
(GaAs substrate for a power of around 4 W.

In conclusion, an asymptotic behaviour for the temperature (b — oo), for practical
dimensions, can be assumed. Only the power dissipation density with exponential de-
pendence could adequately explain the temperature dependence with all the physical
parameters studied. We have shown that the only parameter that affects the tempera-
ture, for practical parameters, is the output power of the laser beam. Worst-case CW

laser power must be less than 0.1 mW to avoid a shift in the value measured electrical
parameters, due to heating.

Appendix 1: Exponential power dissipation density.

In general, the power dissipation varies proportionally with e~**, where z is the depth in the
material. Then g(z) = Ae™%%, A being a constant to determine. By integrating g(z) over the
entire volume of the cylinder which the laser beam is striking, and equating this integral to
the total power of the laser beamn:

h r27 ro
Pl f / [ g(z)rdrdfdz
0 Jo 0

then P = (Ama?/a)[1 - ¢ **]. Due to h 3> 1/ = e™** « 1, then A =~ aP/ma®. The power
dissipation can be approximated as:

g(z) = %l';e““ = gi= —;—ﬂ:Pkoe_“z
(O the other hand:

gt =< g3(2) >= 1/h [P gi(2)dz = P/malhk,

Appendix 2: Conversion of Kirchhoff’s variable U.
The Kirchhoff transformation was defined as in Eqn. 2, where k(T) is the thermal conduc-
tivity of GaAs: k(T) = 54.4 x 10°T~"% [4]. k, = k(T,). Then integrating and solving for T:

i il-—([f?oiuﬁuujﬁ (X)

References
[1] X. Xu, ¢t al., Appl. Phys. 4, 62, 51, (1996).
[2] S. Sumie, et al., Jon. J. Appl. Phys., 31, 3575 (1992).

[3] D. Abbott, K. Eshraghian, Euro. GaAs and Related III-V Compounds Appl. Symp.,
Paris, p. 3B3. (1996).

i] F. Bonani and G. Ghione. Solid-St. Electron., 38,1409 (1995).

M. Abramowitz and LA, Stegun, Handbook of Mathematical functions, Dover Publica-
tions, New York, pp. 375-377 (1972).

f4]
[5] H.S. Carlslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd Ed., OUP. 1959.
6]

]

L. Departunento Ingenierfa Electrénica y Automdtica. TUMA. Universidad de Las Palmas
de Gran Canaria 35014, Espana. e-mail: benito@cma.ulpgc.es.

2. Centre for High Performance Tntegrated Systems and Technologies (CHiPTec). The Uni-
versity of Adelaide. SA 5005, Australia.

5. Alzowith Edith Cowan University, Joondalup, WA 6027, Australia.



ACTAS

XVI CEDYA

Congreso de Ecuaciones Diferenciales y Aplicaciones

VI CMA

Congreso de Matematica Aplicada

Las Palmas de Gran Canaria
21-24 Septicmbre 1999

Editores:

R. MONTENEGRO
G. MONTERO
G. WINTER

Organizacion:
CENTRO DE APLICACIONES NUMERICAS EN INGENIERIA (CEANI)

DEPARTAMENTO DE MATEMATICAS DE LA UNIVERSIDAD
DE LAS PALMAS DE GRAN CANARIA (ULPGC)

SOCTEDAD ESPANOLA DE MATEMATICA APLICADA (SEMA)



) Del texto: los autores
@ De la edicion: Ralael Montenegro: Gustavo Montero: Gabriel Winter (eds.)
Servicio de Publicaciones y Produccion Documental de la U.L.P.G.C.

ISBN: 84-95286-17-3 (Obra Completa)
ISBN: 84-95286-18-1 (Tomo II)
Bl %3G 285190

Impresion: Taravitea Artes Grificas
Meson de Paios. 6 « 28013 Madrid

swrosamente prohihudo. smeoawonzacion escrita de los titulares del «Copyrights, bujo
s estublectdas por Lis feves, la reproduceion parcial o total de esta obra por cual- |
Cprecedimienios comprendidos L repografia v el tratamiento informatico.




th

16.

19.

20,

D. CHAPELLE. M. A. FERNANDEZ y P. LE TALLEC

Un Modelo Simplificado de Interaccion Fluido-estructura

G. Diaz. J. 1. Diaz y Ci. FAGHLOUMI

Pérdida de Actividad de un Catalizador Depositado en el Contorno
en Modelos de Reaccion-difusion ..............eimincn.. sstavixasssases

J. 1. Diaz y M. B. LERENA

Existence of a Free Boundary in a Two-dimensional Problem Modeling
the Magnetic Confinement of @ Plasma ..........cceccimiciisississsssussaciosnns

J. 1. Biaz y 4. I TECLG

On a Free Boundary Problem Modeling the Growth of Necrotic Tumors
in Presence of Inhibitors

J1.1. Diaz ¥ L. TELLG

Infinidud de Soluciones Estacionarias para un Modelo Climatolégico
Simple Via un Método de Tiro ............

E. GiL y C. pE Toro

Métodos para la Interpolucion de Interrupciones en Series Mareo-

D. Gomez, M. LoBo y E. PEREZ

Vibraciones de Placas v Membranas con Masas Concentradas: Altas
R T it e e S e e B T L e e

B. GONZALEZ A. HERNANDEZ, D. ABBOTT, B. DAVIS y K. ESHRAGHIAN

Hearting Effects of a Laser Beam on a GaAs Substrate

B. GONZALEZ y G. WINTER

Una Modelizacion para Emplazamiento {jptimo de un Vertido de Aguas
Residuales con Ajuste de Velocidades de Corrientes a Datos y Uso
T o1 o0 T ——

H. IRAGO, N. KERDID y J. M. VIANO

Convergencia de Modos de Altas Frecuencias en Vigas Eldsticas

A. JIMENEZ y A. RODRIGUEZ

Soluciones Metaestables para un Modelo de Campo de Fuase .............

A. Lorez, C. CoNDE, A. FRANCOS, F. MICHAVILA, A. HIDALGO

y 1. M. PEREZ

Un Método de Voliimenes Finitos Cuadrdticos Descentrados para la
Resolucién de Problemas de Transporte de Contaminantes

J. AL Lorez, . J. MARCO y M. J. MARTINEZ

Métodos de Segundo Orden para la Correccion Dindmica de Errores
Sistemdricos en Sistemuas de Referencia

J. Macias

Como Comprender Mejor a “Los Nifios” (Mediante Métodos Inspi-
rados en lu Teorta de Sistemas Dindmicos)

C. MARTEL, J. M. VEGA Y E. KNOBLOCH

Ondus Viajeras Excitadas de Forma Paramétrica en Sistemas casi Con-
SEIRUIUS svssinasssssnssmorssasiosissnsnsmisisismisa sy

AL MarTiNez, C. RODRIGUEZ y M. E. VAZQUEZ

U'n Problema de Control Optimo Relacionado con el Tratamiento de
Asieis ReETdER o R S S R R SRS RS

1445

1453

1461

1469

1477

1485

1493

1501

1509

1517

1525

1535

1543

1551

1559





