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Abstract— Brain computer interfaces (BCI) are used for
communication and rehabilitation. One of the main categories
of BCI techniques is motor imagery based BCI (MI-BCI). A
large number of studies have focused on machine learning
approaches to optimize MI-BCI performance. However,
enhancement of MI-BCI through provision of optimized
feedback modalities has not received equal attention. Motor
imagery and motor execution activate almost the same area of
the brain. During motor skills performance, a combination of
proprioceptive and direct visual feedback (PDVF) is provided.
Thus, we hypothesized that MI-BCI that receives PDVF
outperforms the traditional MI-BCI, which only uses indirect
visual feedback (IVF). We studied 8 healthy subjects
performing MI through (i) IVF and (ii) PDVF. We used 8
channel electroencephalogram (EEG) signals and extracted
features using an autoregressive model and classified MIs using
linear regression. On average, PDVF increased the accuracy of
MI performance by 11%, and improved information transfer
rate (ITR) by more than two times. In conclusion, using PDVF
appears to improve MI-BCI performance according to the
studied metrics, making this approach potentially more
reliable.

Keywords—EEG; motor learning; brain-computer interfaces;
motor imagery; information transfer rate, accuracy

I. INTRODUCTION

Brain-computer interface (BCI) technology has
established the foundation for the human brain to
communicate with machines directly. Motor imagery (MI)
based BCI (MI-BCI) that relies on the rhythm changes occur
within the sensorimotor area of the brain during MI [1], is
one of the main BCI paradigms. In non-invasive MI-BCI, the
brain activity during MI is recorded using EEG [2],
functional magnetic resonance imaging [3] (fMRI), or near
infrared spectroscopy (NIRS) [4]. Among the aforementioned
techniques, EEG is the most practical and affordable
technique and thus, the most commonly exploited modality in
non-invasive MI-BCI applications.

One of the challenges of MI-BCl is its rather low accuracy
and information transfer rate (ITR). This drawback limits the
dissemination of MI-BCIs for widespread application.
Provision of optimum feedback is believed to improve MI-
BCI performance metrics [5]. Proprioceptive feedback, visual
feedback, or different combinations thereof are among the
most common feedback modalities in MI-BCIs [6]. While
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visual feedback is mostly supplied via cursor position update
on a monitor [7], proprioceptive feedback has been provided
using either orthoses [8] or robots [9]. Nijboer et al. [10],
investigated suitability of auditory feedback for MI-BCI, and
found its performance comparable with indirect visual
feedback (IVF). Ramos-Murguialday et al. [11], applied
concurrent proprioceptive and direct visual feedback (PDVF)
as a feedback modality in MI-BCI restorative applications.
PDVF showed increased accuracy of subject response to MI
compared to either no feedback or sham feedback. However,
they did not compare PDVF with other feedback modalities.

Motor execution and motor imagery of a particular task,
activate almost the same area of the brain [12]. Thus, in
search for optimization of feedback modality for MI-BCI we
surveyed different feedback types in motor learning. Enough
repetition of a movement, followed by feedback, results in
motor learning in healthy subjects. Intrinsic feedback is
realized through proprioceptive and/or visual sensory inputs
as a result of the performed motor task. Extrinsic
(augmented) feedback, however, is provided artificially by an
external agent to enhance the motor learning outcomes; an
example of this are athletes who learn new moves via
auditory feedback from the coach [13]. When augmented
feedback is added to intrinsic feedback, it improves the
retention and motor learning outcomes by provision of
knowledge of performance and/or knowledge of result [14].

In contrast to motor learning, there is no muscle
activation during motor imagery and, therefore, no source of
feedback. As a consequence, an external actuator is required
to supply extrinsic feedback in MI-BCI setups. Provision of
IVF through updating the cursor position on a monitor is
currently the most ubiquitous feedback modality in BCI
applications [11]. This type of feedback provision might be
quite effective for some BCI applications, such as in the
P300-based Speller [15]. However, considering the outcomes
of motor learning studies on feedback modalities [16], IVF
may not be as effective in MI-BCI because it lacks intrinsic
(direct) feedback to close the sensorimotor loop. By contrast,
PDVF, in addition to the augmented feedback of IVF,
provides intrinsic visual and proprioceptive feedback.

While, PDVF provides feedback that is closest to motor
learning, supplying IVF via updating cursor position on a
monitor remains the most prevalent feedback modality in MI-
BCI setups. Recently, Lotte et al [17], suggested that current
BCI training approaches that use IVF were suboptimal and
need to be improved. Thus, to investigate alternative
feedback modalities for MI-BCIs we compared two similar
BCI designs that used either IVF or PDVF in eight BCI-naive
subjects. According to our results, PDVF seems to be
superior to the traditional IVF that promotes the application
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II. METHODS

A. Subjects

The study was approved by the human ethics committee
of the University of Adelaide and conformed to principles
outlined in the Declaration of Helsinki. All subjects provided
their written informed consent to take part in the study and all
recorded data were de-identified. Ten subjects (6 males) were
aged 24-40 years. All subjects were asked to attend an
induction session prior to the BCI sessions. During the
induction session, they were trained to remain alert,
actionless, and concentrate during the experiments. Also,
visual and kinesthetic MI were explained to them and then
they practiced these techniques.

Only 8 out of 10 subjects (4 females, 4 males) whose
right vs. left hand MI performance were distinctive, passed
the screening test and were allowed to participate in the
study (training sessions).

B. BCI Setup

A 72 Channel Refa TMSi EXG amplifier, containing 64
unipolar and 8 bipolar channels and a 64 channel Waveguard
EEG cap, were used for data acquisition. Only 8 out of 64
channels (F3, F4, T7, C3, Cz, C4, T8, Pz) were used to
record EEG data. To follow the recommendation of the
manufacturer, The AFz channel was used as the ground
channel. Due to the very high input impedance (in the order
of tera-ohms) of the instrumentation amplifier [18], the
impedance between the scalp and recording electrodes were
kept below 50 kQ. As the amplifier uses a built-in common
average referencing procedure, there is no need to use an
external reference channel to be attached to nose or ears. Any
electrode with impedance more than 256 kQ is considered as
disconnected by the amplifier firmware and is excluded from
common average reference calculation. The sampling
frequency was 1024 Hz and every sample block contained 24
samples. The EEG signals were passed through a 50 Hz
notch filter to remove the power line noise. To remove DC
offset and non related high frequency elements, a band pass
filter with corner frequencies set to 0.1 and 40 Hz was also
applied.

After amplification and filtering by the amplifier, EEG
signals were transferred through a 10-metre-long fiber optic
cable to a FUSBI fiber to USB converter. Then they were
conveyed to a PC using a USB cable. The PC contained an
Intel Core-2 Duo 3.166 GHz processor, 3 GB of RAM, and
used the Windows XP service pack 3 operating system. It
was also mobilized with a 23” LCD monitor with a display
update rate of 60 Hz to provide the IVF feedback.

BCI2000 [19] was adopted as the software platform of the
study because of its real time characteristic. We customized
the source code of the software to supply auditory
commands. We also altered the application module of the
software to progressively update servomotors position
throughout the feedback section of each trial.

To provide PDVF, we fabricated a platform with two
orthoses (one for each hand) to passively flex four fingers
incrementally, according to the attributes of the MI of the
target hand. Each orthosis included a servomotor (Blue Bird
BMS-630) and a mechanical structure made of PVC.

BCI2000 supplied the control commands for servomotors
operation that were transformed via a Micro Maestro servo
controller module to a format readable by the servomotors.

C. Study design

Each participant took part in one screening session
followed by an online training session. The goal of the
screening sessions was to identify the extent to which
subjects could produce distinctive EEG signals out of
right/left hand MI. Next, the most discriminative features of
each subject’s EEG signals were extracted and used to
calibrate their following training sessions. Finally, the
extracted features of EEG signals produced during online
sessions were classified in real time to generate control
signals that were used to provide either PDVF or IVF.

1. Screening session setup

During the screening session, each participant went
through 3 runs of MI of right/left hand. In each run subjects
were instructed to perform ten right and ten left hand MI in a
randomized order. At the onset of each trial, an auditory
command of “left” or “right” was supplied concurrently with
an equivalent visual stimulus. To present the visual cue, a
monitor was placed 1 metre away from the subject at which
an arrow pointing to either the left or right was shown. The
sound levels of the auditory commands were kept constant
throughout the study. Subjects were instructed to perform MI
of their target hands involving four finger flexion within the
3-second-long period in which the arrow was shown. The
subjects were cued to stop the MI and concentrate on their
breathing (relaxation) when the arrow disappeared. After 3
seconds of relaxation, they were given new stimuli to
perform MI for the next trial.

To appreciate the specificity of MI attributes of each
subject, the combination (left vs. relax or right vs. relax) that
resulted in the highest value of the coefficient of
determination (+*) was selected for each individual, where
represents the proportion of the single-trial variance that is
due to the task. While for the majority of subjects right vs.
left hand MI generated the highest discrimination in
sensorimotor rhythms; only right vs. rest and left vs. rest
were considered in this study to minimize the cognition load
and fatigue level.

2. Subjects’ optimum features

According to the findings of Pfurtscheller et al. [1] MI of
hand movement results in a decrement followed by an
increment in the spectral power of sensorimotor rhythms. The
former is known as event related desynchronization (ERD)
whereas the latter is called event related synchronization
(ERS). According to the results of same study, for the
majority of cases these phenomena takes place in the
contralateral rolandic area within the p (8-13 Hz) and (18—
25 Hz) frequency bands. However, in some occasions ERD
and ERS may occur bilaterally. To extract the relevant
features of MI as early as possible during the online sessions,
only ERDs were considered. Among the eight subjects that
proceeded to the online session, six subjects generated only
contralateral ERDs, whereas the other two exhibited
simultaneous ERDs in both, C3 and C4 channels.
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Figure 1: Comparing the accuracy and ITR between two equal MI-BCI setups where either PDVF or IVF feedback provided. The edges of the boxes are
the 25th and 75th percentiles, the horizontal line in each box is the median, and the whiskers extend to the minima and maxima.

3. Feedback provision

Every 24 ms either the position of the cursor on the
monitor (IVF feedback) or the angle of the orthosis (PDVF
feedback) was updated according to the classifier outputs.
Feedback modality of the first run was randomly selected and
then was alternated for the following runs. To ensure
availability of a sufficient amount of data for comparison, the
minimum number of runs set to be four. If subjects were not
exhausted, the number of runs could rise up to eight.

4. Online training session

All participants took part in an online training session no
later than 2 weeks after their screening sessions. The online
session included 4-8 runs of MI of right/left hand four-finger
flexion. Each run comprised 15 randomly presented trials
with 8/7 left/right hand Mls and 7/8 relaxations. Trials started
with auditory commands of “left /right” or “relax” that cued
participants to start MI or relaxation according to the
command. Then, feedback provision section started after two
seconds of trial onset and became updated every 24 ms for
2.5 seconds. Finally, a “beep” signal, cued the end of trial.
The following trial was initiated after a four-second-long
break.

D. Signal Processing
1. Power spectrum estimation

EEG signals become blurred because of the heterogeneity
in the tissues of the cortex and the scalp. To deblur the EEG
signals a large Laplacian spatial filter as an effective method
for reduction of data blurring [20] was applied. To define an
autoregressive (AR) model of the EEG data, the maximum
entropy method [21] (MEM) was adopted. It was chosen over
fast Fourier transform (FFT) due to its capability of robust
power spectrum estimation of short time series [21]. The
spectral power of the most recent 500 ms was progressively
estimated every 24 ms at the predefined frequencies and
electrode positions.

2. Classification

A linear regression algorithm was used to classify the
extracted feature of the EEG data every 24 ms (the duration
of each sample block) due to its simple procedure and fast
processing time. The classification results showed whether
the subject’s performance during the most recent 500 ms
conforms to the requested task (either left/right hand MI or
relaxation). Finally, the classification result was transferred to
the application module to provide either IVF or PDVF.

E. Measures & Statistics
1. Performance measures

To compare the effects of different feedback modalities
on BCI performance two measures were used. First, the
conventional measure of the percentage of the trials that
ended with hit in each run as an index of accuracy was
applied. As a second metric, information transfer rate (ITR)
that simultaneously considers accuracy and speed of data
transfer [22] was used. To calculate ITR in bits per minute
(bits/min) the following formula was applied [22]:

ITR = (log; N + Plog; P+ (1 — P)log, ~—) 60/85 (1)

Where, N is the number of classes (which is two in this
study), and P is the accuracy of each run, and 8.5 is the
duration of each trial in seconds.

2. Statistical analysis

Since the resultant values of the aforementioned metrics
did not have a normal distribution, the two-sided unpaired
Wilcoxon rank-sum test [23] was used. Due to application of
two comparison measures, Bonferroni correction [24] for
multiple comparisons was applied and therefore, the
significance level set to 0.05/2 = 0.025.
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III. RESULTS AND DISCUSSION

Task performance was quantified using accuracy (hit rate
percentage) and ITR. Fig. 1-A compares hit rate percentage
distribution between PDVF and IVF. It shows that PDVF
with average accuracy of 83% outperforms that of IVF by
11% (p = 0.0015). Fig. 1-B shows the comparison between
the ITR distribution out of PDVF and IVF setups. This figure
depict that using PDVF results in the average ITR of 2.81
bits/min which is greater than two times of the average ITR
of IVF (1.32 bits/min) (p = 0.001).

The main finding of our study is that the adoption of
PDVF in MI-BCI systems significantly improves the
accuracy and ITR of the BCI setup. While PDVF only
improves the average accuracy by almost 10%, it resulted in
enhancing the ITR by more than two times due to the
logarithmic relationship of ITR and accuracy. In other words,
application of PDVF enables subjects to communicate more
than two times faster than IVF.

Our results are also in accordance with the findings of
Gomez-Rodriguez et al (2011), who showed that supplying
proprioceptive feedback in parallel with IVF enhances the
accuracy of MI performance compared to that with only IVF
[25]. However, they only studied the effect of adding
proprioceptive feedback to the IVF. Thus, prior to our study,
it remained unclear whether and to what extent PDVF (the
natural feedback for motor learning) outperforms IVF (the
most used feedback with MI-BCIs).

According to the Kahneman’s attention theory [16]
attention resources of the human brain are limited. In other
words, it is difficult for human agents to focus on a number
of different tasks concurrently. Thus, it makes it cumbersome
to fully concentrate on both MI task and realizing IVF,
simultaneously. In contrast, when PDVF is received during
MI performance, the intrinsic visual and proprioceptive
sensory feedback mechanisms are perceived quite similar to
feedback perception in motor learning. Therefore, it may be
concluded that receiving PDVF improves performance and
does not distract subjects during MI.

Since we did not record electromyogram (EMG) of the
hand muscles in this study, we cannot exclude the possibility
that active movement has affected our results.

IV. CONCLUSION

In the current study, the feature extraction and
classification procedure used for both PDVF and IVF
feedback were entirely equivalent. Thus, the improvement of
the adopted metrics is expected to be due to more
discriminant features elicited from PDVF. Specifically,
receiving PDVF enables subjects to produce MIs that are
easier to differentiate from relaxation compared to those with
IVF. These high quality MIs in turn, lead to improved control
over the BCI task and results in higher accuracy and faster
communication. Thus, provision of PDVF feedback in MI-
BCI may be used to render MI-BCI communication faster
and more accurate.
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