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The information channel capacity of neurons is calculated in the stochastic resonance region by using 
the Shannon formula. This quantity is an effective measure of the quality of signal transfer, unlike 
signal-to-noise ratio or information entropy measures, which characterize only the resolution of the 
output and not the rate of information transfer. This fact has also been realized by some authors, 

. however, until now, no published results exist for real stochastic resonators or neuron models. The 
most probable reason of missing results is the problem with defining the maximal bandwidth of the 
system. The trick we use is to applying Wiener's sampling theorem to define the maximal bandwidth. 
The channel capacity exhibits a well expressed maximum versus the input noise intensity, and the 
location of the maximum is at a higher input noise level than it was observed for classical measures, 
such as signal to noise ratio or entropy. In conclusion, more noise is needed for the optimal transfer 
than it has earlier been assumed. 

1 Introduction 

The present paper is an modified conference-version of a recently published paper [1]. 
Stochastic resonance (SR) is a noise assisted signal propagation phenomenon which has 
recently attracted much attention due to its relevance in biology and sensing [1-19]. A 
stochastic resonator (STR) is a special nonlinear system (Fig. 1 ), which requires an 
optimal intensity of noise to be added to the input signal for the best signal transfer. 
Originally, the SR phenomenon was characterized by the signal-to-noise ratio (SNR) at 
the output of the STR by 

SNRout(f) = Ps,out(f) / Sn, out (f) ' 
(1) 

where Ps, ou1(f) is the mean-square (MS) signal amplitude of the periodic component of 

the output at the signal frequency j, and Sn, out(!) is the spectral density of the output 
noise background at the same frequency. 
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Figure 1. Stochastic resonator. The box represents a nonlinear system combining the signal and noise, usually 
involving a threshold. The notion is described in the text. 
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2 On Different Metrics of Information Transfer 

It has recently been realized by Goychuk and Hanggi [ 18] that Shannon's information 
channel capacity is the proper measure to be applied for stochastic resonators. However, 
until now, no published results exist for real stochastic resonators or neuron models. The 
most probable reason of missing results is the problem with defining the maximal 
bandwidth of the system. Very recently, this problem has successfully been solved in [1]. 
Here we present the detailed argumentation without mathematical details. 

Originally, it had been assumed that the SNRout is a sufficiently good way of 
characterizing the quality of the output signal and that the best coherence between it and 
the input signal is achieved when the ratio of the SNR at the output versus the input is 
maximized. That is, the most information about the input signal is transferred though the 
system to the output, hence we have maximal information transfer. Several new methods 
of characterization, which are similar in nature, have been proposed using, in various 
ways, the entropy [ 16-19] 

1 p 
H = 2log2(1+1) 

n 

[bits], (2) 

where H is the entropy of the noisy signal at the input (H;n) or at the output (Hou1), Ps is 
the maximal mean-square signal amplitude (called "signal power") and P n is the mean­
square noise amplitude (called "noise power"). This quantity has the same efficiency of 
signal quality characterization as the SNR given on a deciBell scale, which is called 
resolution in technical fields. However, according to Shannon, and Nyquist, [20,21] 
neither the comparison of SNRout with SNR;n nor the comparison of Hout with H;n are 
sufficient measures of the effecti:veness of channel capacity. They only provide 
information about the degradation of the signal resolution during the transfer. However, it 
does not say anything about the information channel capacity. Simply speaking, these 
quantities talk about the amount of information but they do not say anything about how 
frequently this information is refreshed. This fact is immediately obvious if we look at the 
dimension of H which is the bit. However, the proper dimension of the information 
transfer rate is bits/second. This is obvious from Shannon's formula (and the similar 
Nyquist formula), which was one of the most important milestones in information theory, 

p 
C = Bslog2(1 + .:..s..) 

pn 
[bits/second], (3) 

where C is the channel capacity and Bs is the maximal bandwidth of the signal. According 
to Shannon, Eq. (3) can be interpreted as follows: half of the the logarithmic term is the 
information entropy and 2Bs is the frequency of refreshing this information, because the 
equation is for continuous signals where Wiener's sampling theorem holds. For the 
validity of Eq. (3) in practical cases, any noise outside the frequency bandwidth of the 
signal is removed by a linear filter. The bandwidth Bs in the Shannon formula is the key 
parameter which refers to the rate of refreshing the information and the logarithmic term 
refers to the potential amount of information (resolution) available at each refreshment 
time. As a low value of the information can be compensated by a high refresh rate, that is 
by a large bandwidth, the amount of information alone is meaningless for the 
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characterization of the quality of signal transfer. It is noted in [ 19], without using either 
the Shannon channel capacity or the signal-to-noise ratio, that the information refresh rate 
is important. For example, the elements ofMorse code can be described by two bits (short 
beep, long beep, short pause, long pause), so two bits are enough to communicate via this 
method. The two bits corresponds to the base of the logarithmic term in Shannon's 
formula. The information transfer rate will be determined by the mean frequency of beeps 
and pauses, which corresponds to the bandwidth Bs in the Shannon formula. The aim of 
this paper is to estimate the information transfer rate of neurons in the stochastic 
resonance region by using Shannon's formula. In this region, the input signal amplitude is 
less than the value of the threshold potential of the neuron. Moreover, the linear response 
approach will be used, which means that the input signal amplitude is less than the root­
mean-square (RMS) noise amplitude. Thus, the signal response remains linear while that 
of the noise does not. A further assumption needed to ensure a linear response is that the 
firing rate of the neuron is much lower than the reciprocal of the refractory time. 
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Figure 2. Channel capacity (maximal information rate) C and output signal to noise ratio (SNRcut) of the neuron 
model (with signal amplitude 0.1 V, threshold 1.0 V, input noise bandwidth 100kHz). C has it's maximum at a 
higher input noise intensity, because the larger the input noise the greater the bandwidth of signal transfer 
through the neuron. Note, at these systems, it is the standard way that the input noise intensity is characterized 
by its spectrum, because it is a band limited white noise with fixed cut-off frequency. 

For the calculations [1 ], Kiss' threshold crossing theory [5,22] was used. This theory 
describes the SNR and bandwidth of the output voltage of a simple neuron model. The 
applied trick to get the bandwidth is applying Wiener's sampling theory, that is, the 
bandwidth is half of the repetition frequency of generated spikes at the output. The main 
result of this paper is the channel capacity: 
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where B, ;, is the bandwidth of input noise, U, is the excitation threshold potential of the • 
neuron, Sn;in is the PSD of input noise and A is theRMS amplitude of the input signal. The 
main difference between our measure and the results of others [ 16-19] on various 
systems, is that the Shannon channel capacity, which is our measure, takes into the 
account the variation of the bandwidth versus the input noise intensity and cut-off 
frequency. As the output spike frequency is a monotonically increasing function of the 
input noise intensity, a higher input noise means a higher bandwidth. This effect yields a 
higher intensity of the optimal input noise for maximal information transfer capacity, as it 
can be seen in Fig. 2. 

3 Conclusion 

It has been shown that the additive noise is better for stochastic resonator systems and 
biological information transfer than it was earlier assumed. The reason for the increased 
benefit is the increasing effective bandwidth with increasing input noise. 

References 

I. L.B. Kish, G.P. Harmer, D. Abbott, Fluct. Noise Lett. 1 (2001) L13. 
2. B. McNamara and K. Wiesenfeld, Phys. Rev. A 39 (I 989) 4854. 
3. P. Hanggi, P. Jung, C. Zerbe and F. Moss, J. Stat. Phys. 70 (1993) 25. 
4. M. I. Dykman, R. Mannella, P. V. E. McClintock, N. D. Stein and N. G. Stocks, 

Phys. Rev. E 41 (1993) 3996. 
5. Z. Gingl, L. B. Kiss and F. Moss, Europhys. Lett. 29 (1995) 191. 
6. S. M. Bezrukov and I. Vodyanoy, Nature 378 (1995) 362. 
7. J. J. Collins, C. C. Chow and T. T. lmhoff, Phys. Rev. E 52 (1995) 3321. 
8. A. R. Bulsara and L. Gammaitoni, Physics Today 49 (1996) 39. 
9. K. Loerincz, Z. Gingl and L. B. Kiss, Phys. Lett. A 224 (1996) 63. 

10. F. Chapeau-Blondeau and X. Godivier, Phys. Rev. E 55 (1997) 1478. 
11. S. M. Bezrukov, Phys. Lett. A 248 (1998) 29. 
12. L. Gammaitoni, P. Hanggi, P. Jung and F. Marchesoni, Rev. Mod. Phys. 70 (1998) 

223. 
13. P. Jung, A. Cornall-Bell, F. Moss, S. Kadar, J. Wang and K. Showalter, Chaos 8 

(1998) 567. 
14. G. P. Harmer and D. Abbott, Microelectronics J. 31 (2000) 553. 
15. L. B. Kish and S. M. Bezrukov, Phys. Lett. A 266 (2000) 27 1. 
16. N. G. Stocks, Phys. Rev. Lett. 84 (2000) 2310. 
17. M. DeWeese and W. Bialek, 11 Nuovo Cimento D 17D (1995) 733. 
18. I. Goychuk and P. Hanggi, New Journal ofPhysics1 (1999) 14.1- 14.14 
19. S. P. Strong, R. Koberle, R. R. de Ruyter van Steveninck and W. Bialek, Phys. Rev. 

Lett. 80 (1998) 197. 
20. C. E. Shannon and W. Weaver, The University of Illinois Press, 1949. 
21. C. E. Shannon, Proc. IRE 37 (1949) 10. 
22. L. B. Kiss, in Chaotic, Fractal, and Nonlinear Signal Processing, Proc. Am. 

Institute Phys., ed. R. Katz, Mystic, Connecticut, USA, 375 (1996) 382. 


	SR_ICNF_2001_0_
	SR_ICNF_2001_1__
	SR_ICNF_2001_2__

