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Abstract— Previous studies show that the conventional pair-
based form of STDP (PSTDP), is not able to account for many
biological experiments including frequency-dependent pairing
experiments performed in the visual cortex region of the brain.
However, new improved synaptic plasticity rules, such as Triplet-
based Spike Timing Dependent Plasticity (TSTDP), are capable of
replicating many biological experiments outcomes including the
results of the experiments carried out in the visual cortex. This
paper proposes a programmable analog neuromorphic circuit,
which is capable of reproducing pairing frequency experiments in
the visual cortex. The circuit utilizes transistors working in their
subthreshold region of operation. In addition, it implements a
minimal model TSTDP learning rule, which needs a low number
of transistors compared to its PSTDP circuit counterparts.
These features result in low-power compact circuits that are
suitable for large-scale VLSI implementations of Spiking Neural
Networks (SNNs) with improved synaptic plasticity and learning
capabilities.

I. INTRODUCTION

Spike Timing Dependent Plasticity (STDP) is the most

recognized learning algorithm in VLSI studies of Spiking

Neural Networks (SNN). The conventional form of STDP,

which alters the synaptic weights according to the timing

differences between pairs of pre- and post-synaptic spikes, has

been extensively investigated in many VLSI studies [1]–[3].

In its pair-based form, STDP is able to reproduce the fun-

damental weight change window that has been experimentally

verified [4], [5]. However, the main shortcoming of the PSTDP

rule, is its inability to account for a range of STDP behavior.

For this reason, other implementations of synaptic plasticity

rules are proposed to provide a more accurate representation

of the relevant biological behavior [3].

In order to better reproduce the outcomes of multiple

biological experiments, in addition to spike timings, recent

synaptic plasticity rules considered other synaptic and neural

variables such as membrane potential, post-synaptic spiking

frequency, and calcium ion concentration, in their plasticity

mechanisms [3], [6]. The VLSI implementation of these new

rules becomes challenging, due to the inclusion of these

additional variables in silicon. A synaptic plasticity model,

which alters the synaptic weight based only on the timing

of spikes, with the ability to reproduce a diverse range of

biological behaviors relies on the triplet-based STDP (TSTDP)

rule proposed by Pfister and Gerstner in 2006 [7]. This rule can

be easily implemented in VLSI and does not require complex

circuitry to deal with complex ionic dynamics present in more

complex synaptic plasticity rules, while possessing almost

similar capabilities to these rules [7]. This paper proposes

a simple yet compact analog circuit for a minimal version

of TSTDP rule. Simulation results of the circuit demonstrate

its ability in reproducing complex biological behaviors, where

PSTDP circuits fail.

The remainder of the paper is organized as follows. Sec-

tion II gives an introduction on the PSTDP model and dis-

cusses a previous PSTDP VLSI implementation. Section III

reviews the TSTDP model and introduces the proposed circuit

for a minimal version of TSTDP. Simulation results of both

PSTDP and TSTDP circuits are presented in Section IV and

the results were compared to experimental data. Section V

gives the concluding remarks of this paper.

II. PAIR-BASED STDP

A mathematical representation of the pair-based STDP

(PSTDP) rule [5] is expressed as

Δw =

{
Δw+ = A+ exp(−Δt

τ+ ) if Δt > 0

Δw− =−A− exp( Δt
τ− ) if Δt ≤ 0,

(1)

where Δt = tpost−tpre is the timing difference between a single

pair of pre- and post-synaptic spikes. According to this model,

the synaptic weight will be potentiated if a pre-synaptic spike

arrives in a specified time window (τ+) before the occurrence

of a post-synaptic spike. Analogously, depression will occur

if a pre-synaptic spike occurs within a time window (τ−) after

the post-synaptic spike. The amount of potentiation/depression

will be determined as a function of the timing difference

between pre- and post-synaptic spikes, their temporal order,

and their relevant amplitude parameters (A+ and A−).

Due to its simplicity, the PSTDP rule has been implemented

by many neuromorphic researchers [1]–[3]. One of the simple

implementations for the PSTDP rule is the subthreshold VLSI

circuit proposed by Indiveri et al. [2]. This symmetric circuit

has two potentiation and depression transistor branches as

shown in Fig. 1. The upper branch results in charging the

weight capacitor, if a pre-synaptic spike precedes a post-

synaptic one in a determined time, and the bottom branch is

for discharging the capacitor if the reverse spike order occurs.

The potentiation and depression timings in this design are set

by two leaky integrators, in which their decays are set by two

bias voltages, Vtp and Vtd, for potentiation and depression time

978-1-4799-2452-3/13/$31.00 ©2013 IEEE 229



Fig. 1. Pair-based STDP circuit presented in [2].

constants respectively. In addition, the amplitude of the po-

tentiation and depression are set by VA+ and VA− , respectively.

Therefore, a simple design strategy has been used, in order to

design the PSTDP circuit according to the rule given in Eq. 1.

A similar design methodology has been utilized to implement

the proposed TSTDP rule described in the following Section.

III. TRIPLET-BASED STDP

In this model of synaptic plasticity, changes to synaptic

weight are based on the timing differences among a triplet

combination of spikes [7], [8]. This rule uses higher order

temporal patterns of spikes to modify the weights of synapses.

Triplet STDP (TSTDP) is described by

Δw =

⎧⎨
⎩

Δw+ = exp(−Δt1
τ+ )

(
A+

2 +A+
3 exp(−Δt2

τy
)
)

Δw− =−exp(Δt1
τ− )

(
A−

2 +A−
3 exp(−Δt3

τx
)
)
,

(2)

where the synaptic weight is potentiated at times when a

post-synaptic spike occurs and is depressed at the time when

a pre-synaptic spike occurs. The potentiation and depression

amplitude parameters are A+
2 , A−

2 , A+
3 and A−

3 , while, Δt1 =
tpost(n)− tpre(n), Δt2 = tpost(n)− tpost(n−1)− ε and Δt3 = tpre(n)−
tpre(n−1) − ε, are the time differences between combinations

of pre- and post-synaptic spikes. Here, ε is a small positive

constant, which ensures that the weight update uses the correct

values occurring just before the pre or post-synaptic spike of

interest, and finally τ−, τ+, τx and τy are time constants [7].

The TSTDP rule was proposed, in theory, to overcome

deficiencies in the traditional PSTDP rule in being unable to

reproduce the outcomes of various physiological experiments

such as the data generated by frequency-dependent pairing

experiments performed in the visual cortex [9], or triplet, and

quadruplet spike experiments performed in [10]. The main

advantage of synaptic plasticity rules based upon higher order

spike patterns over pair-based rules is the fact that contribu-

tions to the overall change in efficacy of traditional additive

pair-based rules is essentially linear, while for higher order

rules, the underlying potentiation and depression contributions

do not sum linearly. It is this underlying non-linearity that is

captured in such higher order spike-based STDP rules—but

is clearly lacking in pair-based STDP—and has been shown

to reproduce nonlinear interactions between spikes as those

observed in experiments [3], [11].

Comparing the PSTDP rule shown in Eq. 1, and the TSTDP

rule presented in Eq. 2, a similar design approach to the circuit

shown in Fig. 1, can be employed to design the various parts

of the TSTDP rule. In order to generate the potentials for

plasticity, there is a need for leaky integrators. As shown in

Fig. 1, these integrators are built using a RC network, where

the resistor is implemented using the transistor’s channel

resistance, which is a function of the gate to source voltage of

the transistor. The potentiation and depression potentials for

plasticity in Fig. 1 are marked with Vpot and Vdep, respectively.

If the amplitudes of these voltages are kept below the threshold

of the transistors, to which these potentials are connected, the

transistors will operate in the subthreshold regime, where the

required exponential behaviour is approximately reproduced.

In addition, the timing differences between spikes, Δts, can

be measured by controlling the arrival times of these spikes at

the gates of those transistors, which act as switches. Further-

more, the amplitude of the synaptic voltage changes, which are

represented by the amount of current that sources into or sinks

from the weight capacitor, can be controlled by transistors in

series with the main potential transistors. This will implement

an approximation of the required multiplications in Eq. 1.

Considering this design methodology, a VLSI circuit for

a minimal version of the TSTDP rule, which is capable of

reproducing the visual cortex experiments was proposed [7].

This minimal form of TSTDP rule is demonstrated in Eq. 3,

Δw =

{
Δw+ = A+

3 exp(−Δt1
τ+ )exp(−Δt2

τy
)

Δw− =−A−
2 exp(Δt1

τ− ).
(3)

The circuit for this minimal rule is shown in Fig. 2. This

circuit is a major improvement over previous TSTDP circuits

presented in [3], [8], [12]. The circuit operates as follows:

When a pre-synaptic spike, Vpre(n), is received at the gate

of M2, Vpot1 reaches ground resulting in switching on M5,

and then starts to increase linearly toward Vdd with a rate

determined by Vtp1 that is applied to the gate of M1. In fact,

Vpot1 that controls the existence of the potentiation in the

first place and allows the current to flow through the triplet

potentiation branch (M3-M6) at the time of arrival of a post-

synaptic spike at M6, represents one of the exponential term

in the potentiation part in the first line of Eq. 2 shown as

exp(−Δt1
τ+ ), where τ+ is controlled by Vtp1 and Δt1 shows the

timing difference between the pre-synaptic spikes arrived at

M2 and the post-synaptic spike received at M6.

Furthermore, the amount of current passing through the

potentiation branch (M3-M6) is controlled by VA+
3

, and the

second potentiation exponential dynamic, Vpot2 that controls

the gate voltage of M4. This voltage depends on the arrival

time of the previous post-synaptic spike, Vpost(n−1). When a

post-synaptic spike arrives at M13, Vpot2 reaches ground and

230



Vdd

Vtp1 M1

Vtd1

post(n)V

post(n-1)

Vpot2

Vtp2

pot1

Vdep1

VA2-

VA3+

Cw

Vw

M2

M5

M6

M7

M8

M9

M10

M11

M3

M4

M12

M13
V

V

pre(n)V

Fig. 2. Circuit for the minimal TSTDP rule. This minimal circuit is capable
of reproducing the outcomes of visual cortex experiments [7].

after the post-synaptic pulse duration is finished, it starts to

increase linearly toward Vdd with a rate determined by Vtp2 that

is applied to the gate of M12. Therefore, the current flowing

through M3-M4 approximates A+
3 exp(−Δt2

τy
).

The depression part of the proposed circuit, in which current

flows away from the weight capacitor, Cw, implements only

the pairing depression in a similar way to the circuit proposed

in [2]. In this part, current will flow through M7-M9 if there

has been a post-synaptic action potential in a specified time

window defined by Vtd1 (which corresponds to τ−), before a

pre-synaptic spike. If a post-synaptic spike arrives at M10,

then Vdep1 reaches Vdd, resulting in M8 switches on. It starts

decreasing linearly over time, with a rate determined by Vtd1,

applied to the gate of M11, which corresponds to τ− in Eq. 3.

If a pre-synaptic spike arrives at the gate of M7, before Vdep1

reaches ground and therefore M8 switches off, the depression

branch will conduct currents out of the weight capacitor, with

an amplitude controlled by the gate voltage of M9, which

corresponds to A−
2 in Eq. 3.

IV. EXPERIMENTAL RESULTS

In order to verify the performance of both mentioned

circuits in reproducing the behavior experimentally found in

the visual cortex, they are simulated under similar protocols,

data fitting techniques and experimental conditions. Below is

a brief explanation of experimental conditions, under which

the circuits are examined.

A. Experimental Setup

The proposed minimal TSTDP circuit, as well as Indiveri’s

PSTDP circuit were simulated in HSpice using the 0.35 μm

10 20 30 40 50
0.5

0

0.5

ρ [Hz]

ΔW
 [V

]

PSTDP circuit (Δt=10ms)
Experiments (Δt=10ms)
PSTDP circuit (Δt= 10ms)
Experiments (Δt= 10ms)

Fig. 3. The PSTDP circuit fails to reproduce pairing frequency experiments
performed in the visual cortex. Note that, there is no data available at
30 Hz [7], [9].

C35 CMOS process by AMS. All transistors in both designs

(shown in Figures 1and 2) are set to 1.05 μm wide and 0.7 μm

long. The weight capacitor values are set to 1 pF. It should be

noted that the circuits simulated on an accelerated time scale

of 1000 times the real time. However, for the sake of simplicity

when comparing the results to the experiments, all displayed

results are scaled back to real time. In addition, a nearest-spike

interaction model has been implemented in both circuits that

corresponds to STDP nearest-spike model presented in [7].

B. Experimental Protocol
In the applied protocol in the visual cortex experiments,

performed by Sjostrom et al. [9], 60 pairs of pre- and post-

synaptic spikes with a delay of Δt = tpost−tpre were conducted

with a repetition frequency of ρ Hz. It has been previously

illustrated in [9] that altering the pairing repetition frequency

affects the total change in weight of the synapse. The visual

cortex experimental data under this protocol, are shown in

black in Figs. 3 and 4. When simulating both mentioned

circuits, the same spiking protocol was employed and the

resulting weight changes were measured from the circuit

weight capacitors.

C. Error Measurement and Data Fitting Approach
In an identical manner to [7] that examines their proposed

triplet model simulation results against the experimental data

using a Normalized Mean Square Error (NMSE), both circuits

are verified by comparing their simulation results with the

experimental data and ensuring a small NMSE value. The

NMSE is calculated using the following equation:

NMSE =
1

p

p

∑
i=1

(
Δwi

exp −Δwi
cir

σi

)2

, (4)

where Δwi
exp, Δwi

cir and σi are the mean weight change

obtained from biological experiments, the weight change ob-

tained from the circuit under consideration, and the standard
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Fig. 4. The minimal TSTDP circuit is able to reproduce frequency-dependent
pairing experiments performed in the visual cortex. Note that, there is no data
available at 30 Hz [7], [9].

error mean of Δwi
exp for a given data point i, respectively; p

represents the number of data points in the data set, here is

10 points that are extracted from [9].

In order to minimize the resulting NMSEs for both circuits

and fit the circuit outputs to the experimental data, there is a

need to adjust the circuits bias parameters and time constants.

D. Simulation Results

The first circuit that we examine is the PSTDP circuit shown

in Fig. 1. After optimizing the circuit’s four bias parameters,

i.e. Vtp, Vtd, VA+ and VA− , the best obtained NMSE is 7.74,

which is very close to the PSTDP model error, reported in Fig.

6A of [7]. In addition, circuit simulation results illustrated in

Fig. 3 are similar to the reported results in [7], which shows

that the PSTDP rule fails to reproduce the outcomes of visual

cortex experiments.

In the second simulation, the proposed minimal TSTDP

circuit is simulated with the same protocol and its five biases,

namely Vtp1, Vtd1, Vtp2, VA3+ and VA2− , are optimized so that

the NMSE was minimized. Simulation results for this circuit

along with the experimental data, are depicted in Fig 4. This

figure shows how well the proposed TSTDP circuit performs,

in comparison to the PSTDP circuit, and reaches a good

NMSE=0.39, which is very close to the reported NMSE=0.34,

obtained using Matlab simulations of the minimal nearest-

neighbour TSTDP model, as shown in Table 3 of [7].

Given the ability of the proposed minimal TSTDP circuit

to mimic visual cortex experimental data, a slightly modified

version of our TSTDP circuit, is also capable of reproducing

conventional STDP learning window, Triplet, Quadruplet, and

BCM experiments [13]. The proposed TSTDP circuit consists

of 13 transistors, which is only one transistor more than the

simple PSTDP circuit, shown in Fig. 1. It has a lower number

of transistors than almost all other previous PSTDP circuits

available in the literature [1], [3]. Furthermore, the circuit is

significantly simpler, and smaller than the previously proposed

TSTDP designs available in the literature [3], [8], [12].This

feature makes the proposed circuit consume less power and

occupies a smaller area, which are the main goals always being

sought by the neuromorphic VLSI designer.

V. CONCLUSION

A compact VLSI implementation of triplet-based STDP

(TSTDP) rule is proposed. The synaptic weight modifications

performed by the proposed circuit closely recovers the behav-

ior found in complex biological experiments in the visual cor-

tex, while all previous PSTDP circuits fail to reproduce those

experiments. Furthermore, compared to previous VLSI designs

for both pair-based and triplet-based STDP, the proposed

circuit has significant advantages in terms of power and area

consumption. This feature, along with an improved synaptic

weight modification capability, makes the proposed design

an interesting synaptic plasticity component for implementing

large-scale Spiking Neural Networks (SNNs).
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