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Abstract² Recently, the application of restorative brain-

computer interfaces (BCIs) has received significant interest in 

many BCI labs. However, there are a number of challenges, 

that need to be tackled to achieve efficient performance of such 

systems. For instance, any restorative BCI needs an optimum 

trade-off between time window length, classification accuracy 

and classifier update rate. In this study, we have investigated 

possible solutions to these problems by using a dataset provided 

by the University of Graz, Austria. We have used a continuous 

wavelet transform and the Student t-test for feature extraction 

and a support vector machine (SVM) for classification. We find 

that improved results, for restorative BCIs for rehabilitation, 

may be achieved by using a 750 milliseconds time window with 

an average classification accuracy of 67% that updates every 32 

milliseconds.  

I. INTRODUCTION 

Based on the findings that imagination of motor functions 

can facilitate stroke rehabilitation [1],  BCIs have been used 

by many BCI groups as a tool to assist stroke patients with 

mental practice [2-6]. Specific kinds of BCI systems, which 

are called restorative BCIs, have been proposed to 

reorganize the impaired neural networks in stroke patients 

through motor imagery provided in BCI sessions [7].  In 

contrast to invasive BCI, which involves implanting 

electrodes on the surface or within the brain, restorative BCI 

systems that are used for stroke rehabilitation use data 

collected non invasively. The signal of interest could be 

from the electroencephalogram (EEG), 

magnetoencephalogram (MEG), functional magnetic 

resonance imaging (fMRI), or near infrared spectroscopy 

(NIRS). Note that, EEG-based BCI, however, is the most 

commonly used modality for stroke rehabilitation and thus 

was selected in this study. Mechanisms of recovery (largely 

neuroplastic) are not fully understood. However, Hebbian 

based learning and metaplastic effects are thought important 

[8]. Hence, presuming the importance of coincidence 

between motor modulation and sensory feedback, providing 

real-time or near real-time feedback during training is 

expected to have a constructive role in this regard. 
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 In a recent study [5] a motor imagery based BCI system 

was used to actuate a robotic system for upper limb 

rehabilitation of stroke patients. In that study classifier result 

updated based on subject motor imagery or motor execution 

power spectrum density (PSD) of mu [8-13 Hz] and beta 

[18-26 Hz] bands during the first 500 milliseconds after cue 

onset and then every 300 ms compared to their resting PSD. 

Moreover, Buch et al. (2007) [4] and Shindo et al. (2011) 

[6] in very similar designs, used motor imagery based BCI 

and visual feedback for training aimed at recovery of finger 

movements. Complementary proprioceptive feedback was 

also provided after successful modulation of the requested 

motor imagery at the end of the trial.  Besides a number of 

study design similarities between Buch et al. and Shindo et 

al., they also had two main differences. One difference was 

in the signal acquisition, where Buch et al. used MEG while 

Shindo et al. used EEG. The other difference in their study 

designs was the classifier update rate, which was 300 ms for 

the former while it was defined to be 30 ms in the latter. 

Even though in a previous study [9] the optimal delay 

time for feedback provision was proposed to be in the 200-

300 ms range, no specific reason for suitability of that delay 

was provided. Considering the variable results reported in 

these studies, here we propose to investigate potential effects 

that different timing may have on the achieved results. 

In addition, application of BCI for stroke rehabilitation 

typically starts with a calibration session to extract the 

optimum channels and frequency bands for feature 

classification followed by training the patients based on the 

results of the calibration session. However, as has been 

mentioned in [6], stroke patients experience various 

difficulties, including spasticity in their muscles and lack of 

proper sleep. Thus, minimizing the number of sessions may 

LPSURYH�VWURNH�SDWLHQWV¶�DGKHUHQFH�WR�%&,�Eased therapy. 

Thus we also examined whether it is viable to improve 

classification accuracy of a motor imagery BCI system for a 

typical healthy subject by adding further healthy subject 

training data to train the classifier (subject- independent 

classifier) compared to the method that uses only training 

data of the same subject for testing its classification accuracy 

(subject-dependent classifier). 

II. METHODS 

A. Data set 

We utilized a widely used data set (Dataset 2b of BCI 2008 

competition) from the University of Graz, which is 

accessible via  http://www.bbci.de/competition/iv/. This  
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Table. 1: Dataset Specifications 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dataset comprises EEG data from 9 healthy subjects, who 

were asked to modulate motor imagery based on provided 

visual cues.  Each subject had 120 calibration trials with no 

IHHGEDFN� IRU� HDFK� KDQG¶V� PRYHPHQW� LPDJHU\�� ��� training 

trials for each hand (with feedback) and 320 trials for 

testing. For every subject, a number of trials (around 20%) 

were contaminated with EOG artifacts that were rejected and 

analysis was only conducted on clean data. Data has been 

recorded with 3 electrodes (C3, Cz and C4). During training 

and test sessions, continuous visual feedback was provided 

after 2 seconds. Table 1 summarizes the dataset features. 

 

B. Feature extraction 

It has been shown in [10] that desynchronization followed 

by synchronization of event related potentials (ERD/ ERS) 

in both the mu and beta bands occurs during motor imagery. 

Furthermore, such ERD/ERS only occurs in short and non- 

stationary periods. Thus, we decided to use a continuous 

wavelet transform based on the Morlet wavelet for feature 

extraction, as it has been shown to be more powerful than its 

discrete version in extraction of subtle EEG features [11]. 

Moreover, it has been demonstrated in [10] that 500 ms after 

cue onset in beta band, ERD in the contralateral hemisphere 

is coincident with ERS in the ipsilateral hemisphere. Thus, 

to be able to extract such representative features, that in turn 

leads to higher classification accuracy, we based our feature 

reduction methodology on finding the most discriminant 

features using the Student t-test. The full description of our 

feature extraction methodology is provided in our previous 

work [12]. Since the exploited data set contained 3421 trials, 

to make its classification more computationally efficient, we 

decided to only extract 6 features per channel for each  [8- 

13 Hz] (mu) and [18-26 Hz] (beta) frequency band that in 

total provided 24 features for each trial. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C. Classification 

Even though we showed in our previous work [12] that 

neuro-fuzzy classifiers outperform SVM in accuracy, linear 

SVM provides faster results for online applications. Thus we 

used a linear SVM classifier, which was demonstrated to be 

one of the most powerful techniques for EEG classification 

[13] using functions provided by Matlab software. To 

compare the accuracy of classification for different window 

lengths, we defined the window length of training and test 

data to be 250, 500, 750, and 1000 ms and then shifted the 

time windows in steps of 32 ms. We used a 32 ms time shift, 

which was the closest value to the 30 ms classifier update 

rate (used in Shindo et al. study), considering that the 

sampling frequency of the EEG data was 250 Hz. We used 

the entire subjects training data for classifier training and 

then tested its classification accuracy for all test data 

regardless of their correspondent subjects. We first used 

calibration data as well as training data for classifier 

training, hypothesizing that the larger the training dataset, 

the better the training of the classifier and consequently, the 

higher its classification accuracy would be. Thus, we only 

used the first four-second part of each 4.5-second-long trial, 

because we wanted to make them similar to the calibration 

data trials, which were only 4 seconds long. However, when 

we trained the classifier based on the mentioned hypothesis, 

it turned out that its average accuracy with 10-fold cross 

validation was very close to chance (53%). In search for the 

reason for these poor classification results, we noticed that 

calibration data, due to lack of feedback provision, might not 

be quite similar to training data in which subjects were 

provided with continuous feedback after 2 seconds.   

In other words, while increasing the training dataset size 

may lead to improving classification accuracy, it only occurs 

when we provide homogenous data for classifier training. 

Fig1. Classification accuracy results for different time window lengths 
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(clean)  

2b 2008 2 (Left/ Right hand) 2 (C3, C4) 0.5±100 Hz 250 Hz 9 1182 2239 
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Table. 2: Classification statistics for different window lengths 

 

 
 

Thus, we decided to use only training data and excluded 

calibration data for classifier training based on the 

aforementioned findings. By doing so, we limited the 

training data to only the most similar ones to test data, to 

improve the classifier accuracy. 

 Regarding comparison between subject-dependent and 

subject-independent classifier training, for the former we 

XVHG� RQO\� HDFK� VXEMHFW¶V� RZQ� WUDLQLQJ� GDWD� (around 120 

trials) for classifier training and tested its accuracy with the 

VDPH�VXEMHFW¶V�WHVW�GDWD��+RZHYHU�� in the latter we used the 

entire subjects training data (1182 trials) and then tested its 

accuracy for each subject test data. 

III. RESULTS 

Based on the described methodology, we achieved the 

results summarized in Fig. 1.  The accuracy level for time 

windows 250 and 500 ms started with classification 

accuracy very close to chance, however, for wider time 

windows (750, 1000 ms), the classifiers start with accuracies 

higher than 60%. Moreover, for all time windows, after 

around a second the classification reaches its maximum and 

that maximum level has a direct relationship with the length 

of the time window. Fig. 2 presents a comparison of the 

mean values and standard deviations for different time 

windows that show the direct correlation between time 

window length and corresponding mean accuracy values and 

an inverse correlation between time window length and 

corresponding accuracy valXHV¶� VWDQGDUG� GHYLDWLRQ���

Moreover, considering the highest accuracy of around 75% 

that was achieved by exploiting the whole 4-second-long 

time window for training, the mean accuracy achievable by 

750 ms and 1000 ms time windows seems to be reasonable. 

Regarding the feasibility of a subject-independent classifier, 

we tested both subject-dependent and subject-independent 

methods and results of the experiments are shown in Fig 3.  

There it can be seen that training the classifier with the entire  

subjects training data (subject-independent method) 

improves the accuracy of classifier for 6 subjects ( S1, S2, 

 

 

 

 

 

 

 

 

 
 

 

 

S3, S6, S8, S9) while degrades it for the other three (S4, S5, 

S7). However, it is worth mentioning that the subject 

dependent data provides very close to chance level 

accuracies for subjects S2, S3, while subject independent 

classifier provides higher classification accuracies for them. 

On the other hand, subject dependent classifier creates better 

results for subject S4 that has the highest accuracy level for 

both training methods.  

 

IV. DISCUSSION 

The main finding of our study is that whenever a part  or 

whole of the time windows are located in the first 500 ms of 

trials, accuracy is lower compared to the rest of the times as  

demonstrated in Fig. 1. This finding is in conformity with 

the literature [14-16], showing that the EEG data recorded 

during the first 250-500 ms of motor imagery trials do not 

include discriminant information. In terms of 

neurophysiology this delay in modulation of motor imagery 

may reflect the few hundred milliseconds of time that 

subjects need to recognize the visual stimulus followed by 

motor planning.  

Moreover, the trend of all time windows shows that after 

reaching a maximum value that varies between 750 to 1000 

ms for different time windows, the level of accuracy starts 

degrading gradually until the end of trial. This behavior 

might reflect the decrease in subject attention to the task as 

the trial goes on. In addition, it might be concluded that 

based on the accuracies provided by 250 ms time windows, 

the most discriminating time window is the 750-1750 ms 

period after the cue onset as this time period provides the 

highest accuracy level. 

Considering the optimum choice for time window length 

while taking into account the trade-off between its length, 

and its transient and stable accuracy levels, it seems that the 

750 ms long time window could be considered as the 

optimum choice since it starts with 61% accuracy and ends 

with 62% while its mean value (66.45%) is only 1.71% less 

 

Window 

length ( ms) 

First 

accuracy (%) 

Rise time 

(ms) 

Maximum 

accuracy (%)  

Last 

accuracy (%) 

Mean 

accuracy 

Standard 

deviation 

250 49 1000 67 60 61.09 3.8 

500 54 900 71 62  64.06 3.3 

750 61 1000 72.3 62 66.45 2.7 

1000 65 750 72.9 64 68.16 2.5 

 

Figure 3.  Comparison of subject-dependent and subject-independent 

training methods for subjects S1 - S9   
Figure 2.  Mean and standard deviation for different time window 

lengths 
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than the average accuracy level of the 1000 ms window. In 

addition, the 750 ms time window allows the exploitation of 

the above mentioned golden window of time (750± 1750 ms) 

in which the most discriminating features can be extracted.  

  Comparing the rehabilitation level of stroke patients of the 

studies by Buch et al. and Shindo et al., it must be 

considered that patients in the Buch et al. group had a more 

VHYHUH�LPSDLUPHQW�LQ�WKHLU�DIIHFWHG�KDQG¶V�ILQJHU�PRYHPHQW�

(no residual finger movement) compared to the patients of 

the Shindo et al. study, who had some residual motor 

functions. Moreover, it needs to be considered that  recovery 

in mild to moderate stroke patients is more likely than in 

more severely paralyzed stroke patients [17]. Nonetheless, 

the role of providing ten times faster feedback in the Shindo 

et al. study, which used a 30 ms classification update rate 

compared to Buch et al. study, which used a 300 ms 

classification update rate, cannot be ruled out and it could 

have played an important role in the higher recovery level in 

the Shindo et al. study.  

In addition, based on [18] a key factor for choosing the 

time shift for any BCI system that needs to be considered is 

that its value has to be greater than the sum of data transfer 

time, signal processing time and application delay. 

Otherwise, the provided feedback cannot be considered to be 

real-time, which consequently degrades performance of the 

BCI system. It has been explicitly mentioned in [18] that  

assuming a 30 ms buffer length of the EEG amplifier, it is 

far greater than the required time for data transfer, signal 

processing and application delay in total, when recording 

data with 4 channels. This time (30 ms) is very close to the 

32 ms that we used in this study as window shifting width. 

These authors used a typical home PC configuration with a 

16 channel gUSB amp EEG amplifier and open source 

BCI2000 as their software platform. Since their experiment 

design did not include any specialized hardware, considering 

the accessibility of the hardware and software to any BCI 

laboratory our suggested update rate seems to be feasible 

and practical.  

It has been demonstrated in this study that  using subject 

independent training method, it is possible to improve the 

classification accuracy level of the subjects with low 

accuracy levels. However, it would be only possible in cost 

of decreasing the accuracy level of subjects who could have 

achieved higher accuracies with subject dependent method. 

In addition, caution must be taken when applying this 

strategy to stroke patients. It may work only for the groups 

of stroke patients who have similar lesions and similar motor 

imagery capabilities.  

V. CONCLUSION 

In this study we have shown that 750 ms long time 

windows with classification accuracy update rate of 32 ms 

and average classification accuracy of 67% results in a 

viable design for restorative BCI applications. This design 

would provide patients with fast feedback that is likely to be 

critical for Hebbian learning and leads to greater functional 

recovery of stroke patients [8]. 
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