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Abstract This paper reports on the local recon-

struction of a region-of-interest from 3D terahertz

imaging data obtained via a quantum cascade laser

(QCL). It is an important step in understanding

the trade-off between wavelet based techniques and

traditional filtered back projection (FBP) for local

reconstruction of terahertz images. The advantage

of local reconstruction is a reduction in measure-

ment time. Segmentation algorithms are applied

to the reconstructed images with low contrast for

analysis of optical properties of target objects with

complex contours.
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1 Introduction

Terahertz radiation (T-ray) spans the frequency
range from 0.1 THz to 10 THz in the electromag-
netic spectrum [1]. The potential based on high
power Quantum Cascase Lasers (QCLs) is of interest
with advantages for biomedical imaging and secu-
rity detection [2]. In contrast with traditional THz
pulsed imaging, QCLs provide high power sources of
continuous wave (CW) radiation to achieve deeper
penetration of samples, which has been identified as
one of four principal challenges for terahertz tomog-
raphy [3]. The CW terahertz imaging methods use
THz of constant intensity and further offer improved
signal-to-noise performance, but with the difficulty
of resolving the material absorption from scattering
[4]. This paper investigates the scattering of ter-
ahertz CW radiation with QCLs and applies local
reconstruction algorithms to a sample target with
complex contours.

Unlike Magnetic Resonant Imaging (MRI) and X-
ray imaging, which realise parallel scanning using
multiple point detection, point to point detection is
the fundamental scheme of terahertz scanning. How-
ever, T-rays are non-ionising unlike X-rays and al-
low imaging of relatively small objects compared to
MRI. To overcome the point-to-point scanning dis-
advantage, it is important to reduce the time of ter-
ahertz measurements. The main goal of this paper is
to present a wavelet based reconstruction algorithm
for QCL-based terahertz computed tomography and
to show how this algorithm can be used to rapidly re-
construct the region of interest (ROI) with a reduc-
tion in the number of required measurements. We il-
lustrate filtered sinograms and reconstructed images
in the region of interests at different measurement
heights, using as sample a polystyrene clown’s head
with a hollow inside. It is found that local recon-
structions of the target’s internal structure take on
a number of different shapes since the various con-
tours of the target physically change the estimated
optical properties of the object. Local computed
tomography (LCT) achieved from scaling functions
shows better resultant reconstruction with improved
smoothness and reduced artifacts.

1.1 Introduction to T-ray QCL

QCLs are semiconductor injection lasers, based on
quantum semiconductor structures that are grown
by molecular beam epitaxy and designed by band
structure engineering [2]. Quantum cascade lasers,
in principle, are realised via intersubband transitions
in a multiple-quantum-well (MQW) heterostructure
[6]. Different from the conventional diode laser tech-
niques, QCLs only involve a transition of the elec-
tron that occurs between the conduction bands (in-
tersubband) instead of transitions from conduction
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Figure 1: (a) One period of the conduction band profile regarding a bound-to-continuum design of the semiconductor
layer sequence. The upper, and lower states of the laser transition and the injector miniband ground state are labelled
2, 1, and g, respectively. The transition energy, given by the energy difference between 2 and 1, is 12 meV. At
alignment the wave functions of the upper and lower state are broadly overlapping. The upper state wave function is
concentrated mainly in the two quantum wells adjacent to the injection barrier, reducing the overlap with the lower
energy states in the injector miniband, thereby enhancing the non-radiative upper state lifetime. Electrons are injected
into the upper state from state g through injection barrier. The active region consists of 85 identical repeat periods.
After [5]. (b) Experimental apparatus for a THz QCL imaging system used to realise THz CT. The sample is placed
on a rotational stage for multi view angles, which is mounted on a xyz linear stage to perform 3D scanning.

into valence bands. As a result, the emission wave-
length can be controlled by the thickness of the
MQW, and the intrinsic high-power capabilities of
the lasers make possible the cascading process, in
which each electron generates several tens of photons
in superlattice structures. In addition, intersub-
band transitions are characterized through ultrafast
carrier dynamics and band-structure engineering is
available to successfully control the electron flow and
thus increase population inversion, which ultimately
controls the laser threshold [6]. Fig. 1(b) shows a
schematic diagram of a THz bound-to-continuum
(BTC) QCL design, for the current THz experiment.

The current THz QCL is a GaAs-AlGaAs bound-
to-continuum superlattice design, emitting at 2.9
THz (103 µm), and grown by molecular beam epi-
taxy [7]. This device typically operates up to 95
K in pulse mode and delivering 70 mW per facet
peak power. Illustrated in Fig. 1(a), the QCL is
mounted on the cold finger of a continuous-flow
helium-cooled cryostat maintaining a heat-sink tem-
perature of 4.2 K. The emission is collected and fo-
cused with a pair of off-axis parabolic mirrors onto
the sample. The sample is mounted on a rotational
stage, which is itself mounted on an x− y− z trans-
lational stage. This current terahertz imaging setup
achieves point to point detection. The linearly mov-
ing stage enables parallel scanning along the x-axis

with linear velocity of 20 mm/s and a rotating stage,
labelled by θ, allows projections of an object to be
taken at a number of projection angles with a rotary
velocity of 4 degree/s. The y-axis is perpendicular
to the paper. The z axis motion allows the sample
to move vertically in order to obtain cross section
images at various heights. The transmitted beams
are detected by a Golay cell. The power incident on
the sample, including the effects of the transmission
of the cryostat window, is typically ∼35 mW (peak).
The signal-to-noise ratio in the absence of a sample
in the beam is 20 dB. For more detail refer to [8].

2 Methodology

2.1 An Overview of CT

The filtered back projection algorithm (FBP) is of-
ten used in the calculation of the inverse Radon
transform [9]. Normally, this algorithm begins with
a collection of sinograms obtained from projection
measurements. A sinogram collects points in a pro-
jection space. It is simply a collection of the projec-
tions at all the projection angles. A 1D projection
at each projection angle is a linear integral of the
image intensity along the projection offset.



2.2 2D Wavelet Based CT

Wavelet transforms play an important role in many
image processing tasks. They have the advantage
of much improved joint time-frequency localisation
over Fourier transforms. In practice, it is nearly al-
ways implemented using digital filters and downsam-
plers. In two dimensions, the discrete version of a
wavelet transform can be realised by a 2D scaling
function, and three 2D wavelets, which are calcu-
lated by taking the 1D wavelet transform separately
along the rows and columns of an image [10].

In order to achieve 2D wavelet reconstruction, the
wavelet coefficients of a function on R2 space are
computed directly on the Radon transform data.
This method enables reduced computation com-
pared to the wavelet coefficients obtained, after con-
ducting wavelet transforms in a reconstructed image.
Additionally, the wavelet coefficients are calculated
locally allowing the local reconstruction to yield lo-
cal computed tomography [11]. The main formulas
for 2D DWTs, on projection data, for the recon-
struction of a CT image are introduced, which are
realised via performing separate wavelet transforms
on 1D projection data. The function enables image
reconstruction as the conventional inversion of the
Radon transform method, while the ramp filter is
replaced by the wavelet ramp filter.

A significant characteristic of wavelet functions
is that they must have a number of vanishing mo-
ments. Hilbert transforms of functions with many
vanishing moments have been shown to decay very
rapidly at infinity. In other words, a wavelet func-
tion with compact support allows a local basis to
maintain its localised features after Hilbert transfor-
mation [11]. Therefore, the wavelet and scaling coef-
ficients for a wavelet basis can be calculated after ap-
plying the projections passing through the region of
interest plus a margin for the support of the wavelet
and scaling ramp filters. These reconstructed coeffi-
cients, in this experiment, are then directly applied
to the inverse wavelet transforms for terahertz im-
age reconstruction [11]. For the current image re-
construction, only one 2D wavelet transform level is
used for simplicity.

3 Implementation

3.1 Practical Consideration

In this paper, one set of terahertz QCL data
is considered for LCT: the nested structure of
a polystyrene clown’s head with hole inside, see
Fig. 2(a). The target sample is imaged in 12 slices,

from bottom to top at twelve different heights, 5 mm
apart. The diameter of the hole is 10.1 ± 0.2 mm
measured directly from the target. For the current
local reconstruction, only the second to fifth image
slices are considered with the hole going through at
the tilted angle of 43◦. The center of the hole at
the first slice is also centered at the bottom cross-
section. The target layers, labelled from Slice 1 to
Slice 4, with 289 projections at each of 18 projection
angles covering a 180◦ projection area in a 250×250
image, in addition to the fifth slice, which includes
268 projections at each projection angle.

In this work, we experiment with the separate 2D
wavelet technique and traditional filtered back pro-
jection algorithm using terahertz tomographic data
by modifying the measured projections. In local
reconstruction, artifacts are commonly found close
to the boundary of the region of exposure (ROE),
which can readily be observed in the application to
terahertz CT data. This modification involves an
extrapolation technique to avoid edge effects due
to sinogram truncations. It is also observed that
approximate coefficients of a scaling function show
good localised features in the local reconstruction
using our algorithm, where the reconstructed im-
age shows a smooth and uniform segmentation effect
compared to local reconstruction using FBP.

3.2 Error Analysis

In order to test the performance of the local imag-
ing system, we compare binary grey-level images ob-
tained via segmentation after back projection recon-
struction. The cases considered include: a truncated
version of global CT via FBP, the proposed LCT
via wavelet transforms, and LCT via FBP, all car-
ried out over the region of interest. The difference
is calculated between the ground truth (determined
analytically) and each of the resultant segments at
four different measurement heights. The error rate
is regarded as the number of mis-labelled pixels di-
vided by the total number of pixels of the binary
grey-level image from the target sample. For fur-
ther validation of the segmentation results, slopes
computed from the centroids of the segments at two
different heights are compared with the known slope
of the linear hole structure inside the target, which
leads to another error—error in slope.

3.2.1 Characteristics of a hole image

The typical local reconstruction reveals a single hole
through the sample. There are several notable char-
acteristics of this local image, see Fig. 2(b), which
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Figure 2: (a) A photograph of the side face of the clown’s head. (b) A typical local reconstruction, containing a single
hole. (c) The result of applying Otsu’s thresholding method on (b).

are common to typical local reconstructions of the
hole embedded in a 3D target at the difference
slices by different image reconstruction algorithms.
Firstly, the contrast of intensities between the hole
and background is low, and is so difficult to distin-
guish. However, the average intensity of the back-
ground is often roughly uniform across all recon-
structions, with a sightly darker region within the
hole position than the background. The hole em-
bedded in the target physically changes the optical
properties of the target, depending on the slice shape
and hole distance from the detector at each differ-
ent measurement height. These various contours of
the different slices result in varying degrees of opti-
cal distortion due to light scattering. As a further
source of complication, a longer path length from the
hole center position at each slice to the laser results
in larger absorption. The 3D local reconstruction of
the hole target, takes on a number of different shapes
in the different slices. As a result, the boundary of
the hole can be rather difficult to define. Due to
variations in intensity, both within the hole position
and in the background, portions of the hole appear
to blend gradually into the background, without cre-
ating a distinct boundary.

3.2.2 Segmentation strategy

A popular segmentation scheme is image threshold-
ing [10], which can be regarded as a form of pixel
classification. Grey-level intensity as a feature value
is associated with each pixel of an image. The calcu-
lated threshold is compared with the feature value
to map the pixel onto one of two groups, objects
and background regions. The threshold method ap-
plied in the paper is proposed by [12]. It is based
on a statistical analysis of variance. It has been sug-
gested that this approach is preferred among many

popular global threshold methods, especially since
it performs well in situations where there is little
contrast between background and object [13].

The segment is calculated by a single threshold
level for the entire image. This is a reasonable sug-
gestion, since (i) we are not concerned with finding
the boundary of the object cross section, so we effec-
tively only have a two-class problem, and (ii) thresh-
olding just for the hole is followed by post-processing
to clean up the segmented region. We considered
multi-threshold approaches but eventually chose a
single threshold strategy for simplicity, as we found
that sufficient for the aims of this experiment.

Thresholding the image can incur two kinds of
noise: background pixels misclassified to the hole
sample, which produce small disjoint hole compo-
nents in addition to the hole region, and hole pixels
misclassified as the background, which produce gaps
in the hole region of interest, see Fig. 2(c). Misclas-
sification of either target sample of interest or back-
ground pixels near the hole boundary can also pro-
duce an extremely coarse boundary. In order to ob-
tain the boundary representation of the hole region,
region-based segmentation operations and morpho-
logical operations [10] are combined to repair the
gaps in the hole region of interest and improve the
smoothing boundaries. This approach aims to ap-
ply region growing on a typical local reconstruction,
which is represented as follows. Eight neighbor pix-
els are used as seed pixels. There are four starting
points from four sets of seed pixels, which are ap-
plied for segmentation. Those starting points are
positioned at the central point of the ROI or around
the image center. The four sets of seed pixels move
from pixel to pixel along four quadrants of the co-
ordinates, separately, starting from the four starting
points. Predefined criteria are selected depending
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Figure 3: Illustration of the resultant segments and the difference at Slice 1. (a) The segment in the ROI using
traditional FBP and global data. (b) The difference between the segment of (a) and the simulation. (c) The segment
in the ROI using scaling function and local data. (d) The difference between the segment of (c) and the simulation.
(e) The segment in the ROI using traditional FBP and local data. (f) The difference between the segment of (e) and
the simulation.

on the broken characters that are shown in each re-
construction. The maximum length of the breaks in
the eight neighboring pixels is known to be two to
four pixels. During the processing, we assign 1 to
the pixel satisfying the selection criteria, otherwise
we set the pixel to zero. This region growing is con-
ducted repeatedly till a single, connected hole region
of interest appears without gaps.

In some cases, artifacts can be mistaken for the
hole region of interest. Therefore a simple mecha-
nism is designed to reject artifacts during the seg-
mentation procedure. After region growing is used
to regions obtained by thresholding the local recon-
struction, a simple criterion is adopted to examine
the length feature of the segmented hole region of
interest, to ensure that the correct hole target re-
gion is selected. In this way, large artifacts can be
eliminated, and small artifacts can be removed by
region growing.

For calculation of the error of segmentation based
reconstruction, we compare each of the resultant seg-
ments with the ground truth. The error rate is re-
garded as the difference between the resultant seg-
ment and truth data, with the total number of pixels
then divided by the number of pixels of the segment

from ground truth. The ground truth is known to
be an ellipse with semimajor axis of 13.2 ± 0.6 mm
and semiminor axis of 10 ± 0.8 mm along with the
rotation angle of 8± 2◦.

4 Reconstruction Results

Four situations are analyzed for this target sample.
The sizes of ROE and ROI at each slice heights are
the same, respectively, exclude the Slice 2. They are:
(i) the first slice (Slice 1) from the four slices with
an Region of Exposure (ROE) of diameter 189 pix-
els and an ROI of diameter 110 at the center of the
image; (ii) the second slice (Slice 2) with an ROE
of diameter 230 pixels and an ROI of diameter 195
at offcenter, for ramp filter application to the image,
while an ROI of diameter 160 at offcenter applied to
the wavelet based reconstruction; (iii) the third slice
(Slice 3) with an ROE of diameter 209 pixels and an
ROI of diameter 150 at an offcenter; (iv) the fourth
slice (Slice 1) with an ROE of diameter 196 pixels
and an ROI of diameter 140 at offcenter. Each of
dataset has a pixel interval of 0.5 mm.



4.1 Slice One

The sinogram at Slice 1 with zero padding for nonlo-
cal data. The reconstructed images at an off-center
area with a radius of 95 pixels using the current local
reconstruction algorithms. A 250× 250 pixel image
of the clown’s head target is recovered from scal-
ing coefficients using local data, and the BioSpline
2.2 biorthogonal basis is used. The same wavelet
basis is applied to all the slices for wavelet based
reconstructions. Two dimensional inverse wavelet
transforms are conducted on the four reconstructed
subimages to obtain the image with full package of
wavelet based image reconstruction. For simplicity,
however, the current algorithm only utilises the ap-
proximate image reconstruction.

The segment of the reconstructed image via scal-
ing function Fig. 3(c), shows smoother contours with
reduced artifacts than the segmented image via the
FBP algorithm, Fig. 3(e). In addition, the scaling
function leads to an LCT with small difference in
segment from the ground truth, Fig. 3(d), compared
to the difference in segment, Fig. 3(f), between the
traditional local CT and the truth data, though a
slightly large difference in segmentation from the
truth data compared with the difference, Fig. 3(b),
between traditional reconstructed segment in ROI
using global data, Fig. 3(a), and the ground truth.
The relative error rates using different algorithms
are shown in Table 3. For this slice, the segments
show high quality reconstruction, whether from the
traditional FBP algorithms using global and local
data or from LCT with the scaling function, owing
to the uniformity in the target sample and the rela-
tively short path length to the hole position. More
segments achieved from slices 2 to 4 are omitted due
to page limitations.

4.2 Segment Evaluation

In order to evaluate the current segmentation, in
this experiment, we exploit the fact that the in-
ternal structure, the hole, is straight. This implies
that the segmented hole positions should be propor-
tionally displaced from each other, since they cor-
respond to constant increments of 5 mm in height.
To obtain this measurement, we find the centroid
of the extracted hole for each height, L1-L5, and
the resultant x and y locations recorded in Table 2,
and the slopes between each of the two centroids
from any of two slices recorded in Table 3 illus-
trates the error rate for the three reconstructed al-
gorithms: traditional global reconstruction, scaling
function used for LCT and traditional local recon-

struction via FBP. For similarity, in the following
tables, GCT denotes global CT via FBP algorithms,
ALCT denotes the approximate reconstruction of lo-
cal CT WTs, and FLCT denotes the local CT via
FBP algorithms.

Table 1: The size of both the ROE and the ROI
at four target heights and via the three different recon-
structed algorithms, in units of mm.

algorithms radius L1 L2 L3 L4

approximate LCT ROE 95 115 105 99

ROI 55 80 75 70

LCT via FBP ROE 95 115 105 99

ROI 55 99 75 70

Table 1 records the radii of the ROE and ROI at
different heights via applying scaling function and FBP
algorithms for reconstruction. It is found that, at the
height L1, the radii of the ROE and ROI are the small-
est among all the local reconstructions at the measured
heights from L1 to L4, owing to the smaller optical dis-
tortion, but with the bigger value of (ROE-ROI) than
the local reconstructions for the other target heights. At
the height L2, biggest radii of ROE and ROI are applied
to LCT, though, the scaling function for the reconstruc-
tion needs smaller radius of ROI than FBP based re-
construction. In other words, it is possible for wavelets
to acquire the LCT using smaller exposure area, which
shows the superior ability of wavelet to achieve local re-
construction. With the reduced optical distortion and
improved reconstruction accuracy at the heights of L3
and L4, there are reduced radii of the ROE and ROI to
be employed for the local reconstruction of the similar
size of hole cross-section. The smaller scattering needs
smaller size of radii of ROE and ROI to recover the local
image, vice versa.

Table 2 is the centroid coordinates of the extracted
hole cross-section for each height, which are used for the
calculation of slopes at different target heights.

Table 2: The centroid coordinates of the extracted
hole for each height, with units of mm.

algorithms coordinates L1 L2 L3 L4

GCT via FBP x 134 157 185 207

y 118 124 130 136

ALCT x 135 156 184 198

y 116 126 132 138

FLCT x 136 154 191 202

y 121 130 134 141

The slopes calculated via using global data and FBP
algorithms show similar slopes, which mean a linear
structure can be reconstructed via applying global data
and FBP algorithms. It also validates the current seg-
ment detection. The average slope is 0.2450 with an



error of 0.6875 compared to the ground truth. As strong
scattering caused by the variable shape of the target ob-
ject at different slices, the slope angle of the hole appears
smaller than expected.

The slopes via the scaling function for local recon-
structions can recover the linear structure with an aver-
age slope of 0.3355, with reduced average error of 0.5970.
The larger variations in slope compared with the GCT
shows that the wavelet reconstruction is sensitive to the
physical changing of optical properties of the imaging.

The slopes via FBP algorithms for local reconstruc-
tions can recover the linear structure with average slope
of 0.3467 and the average error of the linear reconstruc-
tion is 0.5858. The local reconstruction via FBP recovers
a linear structure of the hole structure in its 3D posi-
tion with inferior performance compared to the remain-
ing two reconstruction algorithms.

Table 3: The error rate from each of the four heights
and each of the three reconstructed methods.

algorithms L1 L2 L3 L4

GCT 0.1380 0.7112 0.3042 -0.3761

ALCT 0.1824 0.5306 0.2664 -0.3532

FLCT 0.2136 0.5350 0.2224 -0.3552

Table 3 records the calculated error rate. The recon-
structions are achieved by using a FBP algorithm and
global data; approximate local reconstruction; and lo-
cal reconstruction using a FBP algorithm. It shows that
the reconstructed error is the smallest at L1 and the
largest at L2, due to the increased scattering caused by
the variations in the target sample’s shape at the height
L2 compared with L1. The error at L3 is reduced com-
pared to L2 since absorption counteracts the effect of the
scattering. The error at L4 is negative, since the effect
of optical absorption dominates optical scattering.

5 Conclusion

We have presented a wavelet based algorithm for tomo-
graphic reconstruction of a target from its Radon trans-
form of terahertz signals measured using a QCL. Based
on the observation that for some wavelet bases, with suf-
ficient zero moments, the scaling and wavelet functions
have essentially the same support after ramp filtering,
we were able to show that this algorithm can achieve
better performance in locally reconstructing the inter-
nal structure of a 3D target. Segmentation is employed
for the analysis of the quality of the reconstruction, and
it was found that performance was dependent on the
distortion arising from the shape of the different target
cross-sections in a 3D space. A scaling function for the
reconstruction shows a slight structure distortion in the
reconstruction of a 3D structure compared to GCT, due
to the use of local data. A potential direction for future
work is the investigation of using multi-class segmenta-
tion techniques [14] on the reconstructed images.
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