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Abstract—Breast cancer is one of the most common cancers 
among women. One of the early signs of the disease is the 
appearance of microcalcifications clusters, which often show up 
as bright spots in mammograms. It is important to be able to 
distinguish between the shapes of these clusters to increase the 
reliability and accuracy of the diagnosis. In this paper, a new 
method to extract features to classify the microcalcification 
clusters using steerable pyramid decomposition is presented. The 
method is motivated by the fact that microcalcification clusters 
can be of arbitrary sizes and orientations. Thus, it is important to 
extract the features in all possible orientations to capture most of 
the distinguishing information for classification. The proposed 
method shows a clear improvement in the classification 
performance when compared to the wavelet transform; the most 
commonly used multiscale analysis technique at present. 

 

I. INTRODUCTION 
Based on statistics collected by the World Health 

Organization (WHO), it was estimated that 460 000 women 
died from breast cancer in 2008 [1]. Mammography is the 
main clinical technique that uses low amplitude X-rays to 
detect early signs of cancer in breast tissue [2]. An early 
detection of cancerous tissue can help to reduce the number of 
fatalities and improve the success rate of treatments by 30-70% 
[3]. 

After the mammography procedure is made, the radiologist 
will look up for the anomalies on the film obtained. Some of 
the conventional signs that radiologist always looked for in 
mammograms to detect breast cancer are the appearance of 
cluster of calcifications and poorly defined mass. There are 
also some of indirect signs that could related to breast cancer 
such as architectural distortion of breast tissue, asymmetry 
densities and nipple retractions [4]. However, in this paper, 
the focus will be in diagnosing the appearance of 
microcalcifications. Microcalcifications are tiny deposits of 
calcium that are formed in the breast tissue. Isolated 
individual microcalcifications are less worrying compared to 
clusters of microcalcifications. Typical micro-calcifications 
appear in a group, or are ‘clustered’, in mammograms. Their 
sizes vary greatly from 10 µm to up to few millimetres and 
their shapes can also vary from spherical to elongated [5]. 

However, different shapes of cluster might be associated 
with different type of diagnosis results, e.g. benign or 
malignant. A study has reported that only 34% from the total 
microcalcifications cases involved are actually malignant and 
required further biopsy [6]. From the pathological perspective, 
benign cluster are usually smooth and more rounded 
compared to malignant clusters where each cluster is usually 
elongated and irregular [7]. Some examples of micro-
calcification clusters in mammograms are shown in Fig. 1.  

 
(a)       (b) (c)           (d) 

Fig. 1. (a-b) Benign and (c-d) malignant cluster of microcalcifications on 
mammograms from the Digital Database for Screening Mammograms DDSM 
[8]. 

Due to the low dynamic range and low contrast of film, 
together with the fuzziness shapes and sizes of 
microcalcifications, the classifications of microcalcification 
clusters are often made inaccurately. Classifying micro-
calcifications into benign or malignant case accurately could 
help in reducing number of unnecessary biopsies and 
unnecessary anxiety in patients. With the advance in imaging 
technology, Computer Aided-Detection (CADe) and 
Computer Aided-Diagnosis (CADx) can be used to help 
radiologists in diagnosing breast cancer. CAD systems, both 
detection and diagnosis are not aimed to replace the expertise 
of radiologist but to act as a ‘second opinion’ [5]. The aim of 
CADe is to detect or identify any suspicious 
microcalcifications in mammograms. On the other hand, 
CADx aims to assist radiologists in characterization of the 
detected microcalcification clusters into benign or malignant 
classes. Fig.2 shows the schematic of main steps involved in 
the CADx scheme. 

An input to the CADx system is a region of interest (ROI) 
that contains suspected microcalcifications. This ROI is 
detected and marked by the radiologist or CADe system. The 
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first step in CADx system is to extract the features of 
microcalcifications cluster. These features will represent the 
pattern or characteristic of the class of microcalcifications 
cluster, benign or malignant.  Different types of features can 
be extracted to classify the cluster. This will be discussed in 
next section, together with some previous work that has been 
carried out using a different approach for feature extraction.  
The extracted features will then be the input to the supervised 
classifier. Feature selection step is aimed to reduce the number 
of features to an acceptable number, and thus reduce the 
complexity of the system. The classifier will learn the pattern 
of these known samples for both benign and malignant cases. 
The system now has a supervised training pattern that can be 
used to classify the unknown sample based on the features 
extracted. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  A flowchart showing the main steps involve in CAD for breast cancer 
diagnosis in mammograms. 

The efficiency of the system can be evaluated based on the 
accuracy of the system in classifying the cluster. Four possible 
outcomes of the classifier and its terms are as follows:   
• True positive (TP), when the classifier makes a correct 

hit, the patient has disease 
• True negative (TN), when the classifier makes a 

correct rejection, the patient no disease 
• False positive (TP), when the classifier makes an Error 

Type I, the patient with no disease is diagnosed with 
disease 

• False negative (TN), when the classifier makes an 
Error Type II, the patient with disease is diagnosed 
with no disease 

These outcomes then can be used as an input to plot a 
receiving operating characteristic (ROC) curve. This curve is 
representing the relationship between True Positive Rate (TPR) 
and False Positive Rate (FPR). It is targeted to have a system 
with high accuracy or high TPR with a reasonably accepted 
number of false alarm rates. 

In this paper, a new method to extract features to classify 
the cluster of microcalcifications using steerable pyramid is 
presented. The method is motivated by the fact that 
microcalcification clusters can appear in arbitrary orientations 
and sizes. Thus, it is important to extract features in all 
possible orientations to get the most discriminate features for 

classifying the clusters. For each detail image in the steerable 
pyramid analysis, statistical measures such as energy and 
entropy are calculated; the values from all detail images are 
collated to form a feature vector. Due to the large number of 
detail images produced by the steerable pyramid, the size of 
the features vectors also increased. To reduce the 
computational burden, the dimension of the feature vector is 
reduced using Principal Component Analysis (PCA). Finally, 
supervised learning classifier is used to learn the pattern of the 
microcalcifications cluster. The classifier that is used in this 
paper is the support vector machine (SVM). 

II. RELATED WORK 
In the past two decades, many approaches in CADx system 

to differentiate between malignant and benign micro-
calcifications have been studied. The important step involved 
before classifying was done is the extraction of features. It is 
important to extract the most discriminate features that can be 
used to classify the malignancy of the microcalcifications. 

Different approaches have been studied to classify the 
cluster of microcalcifications such as classifications by 
extracting shape-based features and texture-based features.  
As discussed before, the sensitivity of the classifier is 
measured by calculating the true positive rate and false 
positive rate. These rates produce ROC curve where the area 
under the curve (Az) can be used to measure the overall 
performance of the system.   

Features of individual microcalcifications are directly 
extracted from its shape. For example, size, area, compactness, 
number of microcalcifications and etc. Zadeh et al. extract 17 
features from each mammogram to characterize the cluster of 
microcalcifications and obtained the performance of classifier 
of area under curve of 0.82 [9]. However, this approach 
required higher accuracy of segmentation of micro-
calcifications from the background to assure the robustness of 
the feature classifications step. 

Region-based feature extraction offers an advantage by 
reducing the demand to have a very accurate segmentation of 
microcalcifications. This is particularly significant because the 
microcalcifications are small and subtle and because of the 
low contrast of mammography, it is possibly to have 
inaccuracy in segmenting them individually.  

Two of the previous approaches that have been used to 
extract features from microcalcifications using region-based 
method are statistical texture features and multiscale texture 
features. Statistical texture features measures the statistical 
calculations based on the pixel information of the images. One 
of the methods that can be used to extract the statistical 
texture features is surrounding region dependence method 
(SRDM). Lee et al. used 4 features that were extracted from 
the second order histogram matrix and yield an area Az of 0.73 
[10]. 

On the other hand, multiresolution texture features are 
extracted from the spatial information of the images. The 
information was obtained by transforming images into sets of 
coefficients that contains the information of the images. 
Multiresolution analysis has shown a great advantage in 
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texture analysis, because of this framework’s ability to 
analyse an image at different resolutions. This is known as 
‘zooming’ property, and has advantage in analysing 
mammographic images due to the fuzzy shapes and small 
sizes of microcalcifications. One of the methods that can be 
used to perform multiscale analysis is wavelet transform. An 
image is decomposed using wavelet transform into set of 
detail images at different resolution. Common features that are 
extracted from these detail images are energy and entropy of 
coefficients. Dhawan et al. used 2 features extracted from 
multiresolution images as local texture features to 
discriminate between malignant and benign cases. The images 
were decomposed using wavelet transform. Together with 
other global texture features, the performance of the method 
yields an area under curve of 0.83 [11]. In addition, work by 
Soltanian-Zedah et al. has showed that features extracted from 
wavelet and multiwavelet gave a good classifier sensitivity 
compared to the other texture-based features extraction 
approaches [12].  

III. MULTIRESOLUTION ANALYSIS 
Previous work has shown that multiresolution analysis of 

mammographic images has given a promising result in 
assisting radiologist to identify the class of microcalcifications 
[12]. Since the sizes and shapes of cluster of 
microcalcifications are variable, the ability of zooming in 
multiresolution analysis offers a naturaladvantage in breast 
cancer diagnosis. Fig. 3 shows a multiresolution analysis that 
represents an image at different levels. 

 
Fig. 3. Multiresolution representation pyramid from coarse to fine resolution 

A. Wavelet Features 
One of the multiresolution analysis tools that has been 

widely used in image processing is wavelet analysis. 
Originally proposed in the form of Mallat’s pyramidal 
algorithm, an image can be successfully decomposed into 
detail sub-bands at different level of resolutions. The 
decomposition was done by filtering the images using pair of 
low pass (G) and high pass (H) filter, followed by 
downsampling of factor of 2, first along rows and columns. 
This decomposition is known as 2-dimensional (2D) separable 
discrete wavelet transform (DWT). Due to the separate row 
and column processing, this procedure results in 3 detail 
images at each level: vertical (LH), horizontal (HL) and 
diagonal (HH) details sub-bands, as shown in Fig. 4 (a). To 
produce a finer of the decomposed images, the process is then 

further iterated using approximation images obtained from the 
previous level. This will result in multiresolution of 
decomposed images as shown in Fig. 4 (b). 

Fig. 5 (b) shows the detailed images of cluster of 
microcalcifications in Fig. 5 (a) obtained from the decomposi-
tion using traditional wavelet transform. The decomposition 
uses 3 levels of resolution with a factor of 2 between 
successive levels. Entropy and energy of subimages were used 
to form 18-dimensional features that represent the image. 

 
 
 
 
 
 
 
 
 

          (a)      
 
 

(a) 
 
 

 
 
 
 

 

 
 

                                                   
 (b) 

Fig. 4. (a) 2D separable wavelet decomposition (b) Image decomposition at 2 
levels of resolution 

 

 
(a)                                                          (b) 

Fig. 5 (a) Cluster of microcalcifications (volume: benign_01,case3127) [8]   
(b) Detail subimages of microcalcifications cluster image from Figure 6 using 
traditional Daubechies wavelet transform for image decomposition at 3 levels 
of resolutions 

B. Multiorientation and Multiresolution Features 
In wavelet decompositions, the orientations of decomposed 

sub-bands were limited to only 3 directions: horizontal, 
vertical and diagonal. Another form of multiresolution that 
has more orientation sensitivity uses a method called steerable 
pyramid [13]. Fig. 6 shows the decomposition of images using 
steerable pyramid. The image is decomposed into highpass 
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and lowpass sub-bands using highpass (H) and lowpass filters 
(L0). Unlike wavelet transforms, the lowpass sub-band images 
are then decomposed using a set of bandpass filter (Bk) that 
can be rotated at different angles, so steerable pyramid 
produces a set of detail images at arbitrary number of 
orientations.  

 
Fig. 6 Image decomposition using steerable pyramids 

Fig.7 shows the detailed images of same microcalcifica-
tions cluster image in Fig. 5 (a) obtained after the images 
decomposed using steerable pyramid filters. The pyramid was 
built using 8 different orientations ranging from 0 to π radians, 
and 3 different resolutions at factor of 2 between two 
successive levels. This produces 24-dimensional features to 
represent an image.  

Fig. 7 Detail subimages of microcalcifications cluster (image of 
microcalcifications at top-left) using steerable pyramid filters for image 
decomposition at 8 orientations and 3 levels of resolutions 

C. Feature vector and Feature Selection 
Statistical measures such as energy as in (1) and entropy as 

in (2) can be used to label a texture. These measures were 
extracted and calculated from each sub bands to form a feature 
vector that represent each case of image: 
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where ���!" �  	 	 #$%"%$ , and xij is the ijth pixel value of 
detail images. 

 
For selecting best features to represent an image at lower 

dimension, the technique that we use in this paper is Principal 
Component Analysis (PCA). PCA is a commonly used 
technique that can remap a higher dimension of dataset into 
lower dimensions with minimal effort. PCA calculated the 
eigenvalues and eigenvectors of the features covariance 
matrix. Projections onto the eigenvectors corresponding to 
higher eigenvalues usually yield the most discriminant 
features. 

D. Classifier 
Previous work has shown that SVM has outperformed other 

classifiers such as Neural Network (NN) in classifying 
microcalcifications [14].  SVM is one of the supervised 
learning classifier. It is based on maximises the margin 
between two classes. 

IV. RESULT AND DISCUSSION 

A. Mammogram Database 
Images used in the experiment are collected from the 

Digital Database of Screening Mammography (DDSM) [8]. 
The database is available online. It contains a large number of 
2620 cases including normal, cancer and benign cases. In this 
paper, only a subset of 118 microcalcification clusters was 
used. This is because the purpose of this experiment is as a 
preliminary investigation into the use of multiorientation 
feature extraction for microcalcification classification. The 
images used in this research are all chosen to contain of 
microcalcifications, but correspond to both cancer (52) and 
benign (66) cases. Regions of interest (ROI) with size 256 x 
256 were cropped according to the chaincode given with the 
image database, which was marked by the expert radiologist 
as ‘ground truth’.    

B. Result 

1)  Feature extractions 
Statistical measures (energy and entropy) for each sub-band 

in both wavelet and steerable pyramid decompositions were 
calculated. 3 levels of wavelet decomposition produced 
feature vectors of length of 9 for each statistical measure, 
while 3 levels of steerable pyramid analysis at 8 different 
orientations produced a feature vector of 24 for each statistical 
measure.  

PCA was applied both to statistical measures. Energy and 
entropy of wavelet transform showed 2 significant 
eigenvalues, whereas for steerable pyramid decomposition, 
energy produced 5 significant eigenvalues and 3 significant 
eigenvalues for entropy. Fig. 8 shows the plot for eigenvalues 
for each case. We chose the minimum number of significant 
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eigenvalues that is 2, to reduce the dimension of both wavelet 
and steerable pyramid features vector. This is to give a same 
set of features vectors sizes to be input in classifications 
processes. 

 

 
Fig. 8. Eigenvalues plot obtained from PCA method for both energy and 
entropy from Steerable Pyramid (SP) and Wavelet Transform (WT). Result 
shows that the number of significant eigenvalues is for energy obtained from 
steerable pyramid analysis is 5, whilst the other 3 features (entropy from 
steerable pyramid, energy and entropy from wavelet transform) have at most 
2 significant eigenvalues.  

2)  Classifications 
Classifications of microcalcifications into benign and 

malignant is made using SVM with radial basis function (RBF) 
kernel. There were 2 parameters that needed to be set using 
this function, which are the penalty parameter C and γ. A grid-
search with 5-fold cross validation technique is used to find 
the best set of these parameters. In 5-fold cross validation 
method, the dataset are equally divided into 5 sub datasets. 
One of the sub dataset was used as testing set on remaining 
sub datasets as training set. A pair of parameters C and γ are 
used by grid search in the classifier to find the average of 
percentage that accurately classifies the class of 
microcalcifications cluster. The pair of parameters that 
achieved the highest accuracy rates is then used for the SVM 
throughout this paper.  

After the parameters were identified, 50 runs of 
experiments with 80 training datasets and 38 testing datasets 
were done. The training dataset and testing dataset with equal 
number of cancer and benign for each run are randomly 
chosen in each experiment run.  Because of SVM classifier is 
a binary classifier that produces only a dot in ROC space, the 
result is made based on the average of TPR and FPR on 50 
runs with dataset randomly chosen.  

The results obtained from the experiments showed that the 
classifications using features extracted from steerable pyramid 
analysis outperform the features extracted from detail images 
obtained from conventional wavelet decomposition. Table I 
shows that steerable pyramid features showed true positive 
rate of 86.2.7% with false positive rate of 0.51. Whereas 
wavelet features give true positive rate of 77.9% with false 
positive rate of 0.58. It is observed that the proposed method 
for features extraction showed better performance compared 
to the multiresolution features extracted using wavelets.  

 
Fig. 9. TPR vs FPR plot for both steerable pyramid and wavelet transform 
when using entropy as the single feature for classifications. Steerable pyramid 
shows an average of TPR of 88.9% which outperform the average TPR for 
wavelet transform, 79.7%  

 

Fig. 10. TPR vs FPR plot for both steerable pyramid and wavelet transform 
when using energy as the single feature for classifications. Steerable pyramid 
and wavelet transform shows an almost equal average of TPR of 52.4%. 
However, the FPR obtained from wavelet transform shows an improvement 
~10% over steerable pyramid. 

 
Fig. 11. TPR vs FPR plot for both steerable pyramid and wavelet transform 
when concatenating both features – Energy and Entropy for classifications. 
Steerable pyramid shows a good result of accuracy, average TPR of 86.2% 
compared to wavelet transform which only yield an average TPR of 77..9%. 
The improvement of 10% in accuracy clearly shows steerable pyramid has a 
distinct advantage in extracting features for microcalcifications classifications. 
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TABLE 1 

AVERAGE OF TRUE POSITIVE RATE, FALSE POSITIVE RATE AND VARIANCE OF 
SVM CLASSIFIER WITH 4 REDUCED STATISTICAL FEATURES (2 ENERGY AND 2 

ENTROPY)  

 Average TPR Average FPR Variance 
Wavelet Transform 0.7796 0..5790 0.0153 
Steerable Pyramid 0.8624 0.5089 0.0134 

 

V. CONCLUSION 
This paper proposes a novel method to classify 

microcalcifications into benign and malignant cases using 
multiorentation and multiresolution representations. The 
representation is performed by steerable pyramid filtering of 
the images. The advantage of this method over wavelet 
transform is the ability to capture the multiorientation features 
of microcalcifications cluster. 118 samples of 
microcalcifications cluster obtained from DDSM database was 
used in this paper. The supervised learning classifier, SVM 
with RBF kernel has been used to classify the cluster and the 
performance was evaluated by the rate of true positive 
obtained. The performance was compared with the 
conventional multiresolution representation, wavelet 
transform. The performance of the proposed method has 
showed better result compare to the wavelet method. This 
described the potential contribution of feature extraction via 
steerable pyramid analysis in microcalcifications 
classifications.  

In future work, the result of the proposed method can be 
further validated by implementing a controlled study where 
experts are to involve in identifying the class of the 
microcalcifications clusters. The results obtain from the 
proposed method will then compared with the results obtained 
from the experts to see the real contributions. This controlled 
study is not implemented in this paper due to the time and 
resources constraints.  
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