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Abstract— Denoising is widely used in THz signal processing.
In recent years, there have been many papers about applying
wavelet-based denoising techniques to achieve clean THz signal.
Traditionally, denoising by shrinkage on orthogonal, decimated
wavelet transforms satisfies most THz applications with dramatic
improvements in SNR for TDS pulses. In this paper, we apply
the shrinkage technique to non-orthogonal, redundant THz signal
representations to TDS pulses and it is shown that this scheme
is capable of even an even greater SNR gains.

I. INTRODUCTION AND BACKGROUND

THz radiation is loosely defined as having a frequency range
of 0.1 to 10 THz, which is situated between the frequency
ranges of microwave radiation and infrared light. Until the
THz time-domain spectroscopic (THz-TDS) technique was
invented, research in this area was very limited due to high
atmospheric absorption. After the 1980’s, THz-TDS received
a great deal of attention thanks to broad applicability to
detection of biological and chemical materials, quality con-
trol, gas identification and T-ray imaging [7-11]. However,
some of these applications, such as those in security, need
a fast scanning system to acquire data quickly, usually at the
expense of sacrificing signal quality. Such noisy datasets make
analysis difficult and the results are not always reliable. Thus,
denoising techniques are often used after signal acquisition to
accommodate subsequent processing.

Shrinkage techniques [2] were introduced by Donoho and
Johnstone in 1994, and they have been widely and effec-
tively applied for denoising signals which exhibit sparsity in
some non-redundant representation. Its first application in THz
appeared in a paper on gas sensing [9]. Ferguson et al [4]
studied this technique in detail, using additive Gaussian noise
to model experimental imperfections, and it was shown that
shrinkage techniques succeeded in achieving a very satisfying
result in removing the Gaussian noise. Meanwhile, Lang et
al. [6] invented a novel approach for the reduction of noise
based on the traditional wavelet transformation by employing
shrinkage on undecimated and consequently redundant wavelet
representations of various idealised signals. This method im-
proved noise reduction dramatically and can be applied to a
large class of signals. More recently, Elad [3] has also shown
that simple shrinkage works for redundant representations
in image denoising experiments with redundant and non-
redundant representations. He was able to prove that shrinkage
is a special case of an iterative cost minimisation objective. In
this paper, we draw inspiration from Lang and Elad’s work,
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and will investigate the use of redundant representations for
THz-TDS signals, which offer sufficient sparsity and allow the
shrinkage method to work.

A. Discrete Wavelet Transform (DWT) based denoising

Wavelet transform (WT) uses time-frequency localised basis
functions as opposed to Fourier Transform (FT) which used
infinite sinusoids as the basis functions. Since wavelets are
localised both in time and frequency, they require few co-
efficients to represent pulse-like signals such as those found
in THz TDS. Moreover DWT is very efficient since its
wavelet coefficients can be calculated with the computational
complicity of O(N). A recursive structure of Filter Bank is
utilised to implement a DWT, shown in Figure 1.
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Fig. 1. N Level Filter Bank implementation of DWT. Input signal x[n]
flows through low- and high-pass filters before being decimated by 2. a; and
d; are approximation and detail coefficients at i level of decomposition.

Shrinkage is one of the most commonly used tools in WT
domain signal processing. It is widely used for denoising.
There are two types of thresholding used as part of shrinkage:
hard and soft. Hard thresholding sets a coefficient value x; to
zero if it is below T}, , where T,, is some estimated threshold

value.
Yi = 0

We use a Gaussian white additive noise model in this paper.
The noisy signal can be expressed as y = = + n, where is a
noise-free signal and is the additive noise. Hard thresholding
is performed via the following steps:

1) Calculate wavelet coefficients d; by applying DWT.
2) Estimate the threshold value 7,

T, = o0+/2log (N) 2)

where N is the signal length and o is standard deviation
of noise at each decomposition level, estimated by

_ MAD
7= 0.6745
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where MAD represents median absolute value of detail
coefficients.

3) Perform shrinkage

4) Reconstruct the signal using the shrunk (detail only)
coefficients through inverse DWT

B. Undedicated Discrete Wavelet Transform (UDWT)

In DWT, after each filtering step, the output is downsampled
by two, which effectively removes the redundant information
and keep the data size constant. The advantage is less compu-
tation and lower memory requirements to store intermediate
value during the transform. However, this type of transform is
shift variant [1, 6]; there are no obvious relationships between
the wavelet coefficients of a signal and its shifted versions.
Many research groups independently discovered the UDWT
by eliminating the downsampling to achieve shift variance,
at the expense of data redundancy. Figure 2 illustrates the
Filter Bank implementation of UDWT. Denoising procedure

of UDWT is identical to DWT except for the transform.
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Fig. 2. N Level Filter Bank implementation of UDWT. Input signal x[n]
flows through low- and high-pass filters without being decimated. a; and d;
are approximation and detail coefficients at i level of decomposition. Each
level’s filters are upsampled versions of the previous.

II. RESULTS

In our first denoising experiments, white noise was added to
the original signal, a reference THz pulse, such that the SNR is
variable in order to simulate various levels of measurement er-
rors. This reference pulse is from the paper of THz application
in chemical recognition [5] where the details of system setup
and experiment parameters are described. The signals were
denoised 100 times to average the different noise realizations
using two methods. We applied Daubechies wavelet with order
5 in the denoising process. Other experimental parameters are:
signals are of length 512, the decomposition depth scales is 8
and hard thresholding is chosen. In Figure 3, it is obvious that
UDWT outperforms DWT by 6 dB with the SNR_in input in
the range of -5dB to 10dB. In a sense of visualization, Figure 4
shows a smoother denoised signal (in red color) as opposed
to artifacts-introduced denoised signal (in green).

ITII. CONCLUSION

From the results, it is clear that there is a SNR gain of
up to 6dB from a redundant wavelet transform over existing
non-redundant versions. This method can be interpreted as the
repetition of Donoho shrinkage technique on shifted versions
of original signal. It was found that, in terms of both SNR
andvisual results, UDWT-based denoising outperforms DWTs.
These improvements will serve further processing such as any
applications to classification.
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Fig. 3. Denoising performance comparison. SNR_in is the SNR of noisy
signal with various realisations. SNR_gain is the SNR gain resulting from
UDWT and DWT based denoising according to SNR_in. Both are in dB.
Green line measures the SNR after DWT-based denoising; red line is for
UDWT-based denoising. Blue line is the SNR gain difference between those
two methods.
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Fig. 4. Visual view of denoised signals. Red line is the denoising result
from an input signal with SNR of 3dB via UDWT denoising; green line is
the result from DWT denoising.
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