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Abstract—How thick should a sample be for a transmission-
mode THz-TDS measurement? Should a sample be as thick as 
possible? The answer is ‘no’. Although greater thickness allows 
T-rays to interact more with bulk material, the SNR rolls off with 
thickness due to signal attenuation. So, should a sample be 
extremely thin? Again, the answer is ‘no’. A sample that is too 
thin renders itself nearly invisible to T-rays, in such a way that 
the system can hardly sense the difference between the sample 
and a free space path. Hence, where is the optimal boundary 
between ‘too thick’ and ‘too thin’? The analytical expression to 
find the optimum thickness is revealed in this paper. This 
optimality results in the minimal uncertainty of measured optical 
constants. The derived model for optimal thickness is supported 
by the results from experiments performed with polyvinyl 
chloride (PVC) and other materials. 

I. INTRODUCTION AND BACKGROUND 
It is well known to every THz-TDS experimentalist that, in 

transmission-mode spectroscopy, a sample that is too thick has 
considerable bulk absorption and can significantly reduce the 
signal power. Therefore, a sample is usually made very thin as 
long as it can be mechanically supported. However, a sample 
that is too thin can also cause problems, as the system might 
not be sufficiently sensitive to detect resultant changes in the 
amplitude and phase of the signal. Both thickness extremes 
result in higher uncertainty in the measured optical constants. 
In this paper, the optimal trade-off between the two extremes 
is determined, to minimize the uncertainty in optical constants. 

II. UNCERTAINTY IN OPTICAL CONSTANTS 
Given that the sample under a transmission-mode 

measurement has parallel and polished surfaces, and the angle 
of incidence of the incoming T-ray beam is normal to the 
surfaces, the transfer function of the sample is expressed as ܪሺ߱ሻ ൌ ୱୟ୫ሺ߱ሻܧ ⁄୰ୣ୤ሺ߱ሻܧ   ൌ ττԢexp ቄെߢሺ߱ሻ ఠ௟௖ ቅ exp ቄെ݆ሾ݊ሺ߱ሻ െ ݊଴ሿ ఠ௟௖ ቅ , (1) 
where ܧ୰ୣ୤ሺ߱ሻ and ܧୱୟ୫ሺ߱ሻ are the reference and sample 
signals in the frequency domain; l is the sample thickness; ݊ሺ߱ሻ and ߢሺ߱ሻ are the refractive index and the extinction 
coefficient of the sample; n0 is the refractive index of air; and 
τ and τԢ are the transmission coefficients at the sample 
interfaces. The refractive index and the extinction coefficient 
can be deduced from Eq. 1 as 

 ݊ሺ߱ሻ ൌ ݊଴ െ ݈ܿ߱  ሺ߱ሻ , (2a)ܪס

ሺ߱ሻߢ  ൌ ݈ܿ߱ ሼln|߬߬Ԣ| െ ln|ܪሺ߱ሻ|ሽ . (2b) 

Influenced by the variance in measured signals, the 
variances in the refractive index, ݏ௡ଶሺ߱ሻ, and in the extinction 
coefficient, ݏ఑ଶሺ߱ሻ, can be derived from Eq. 2 using the law of 
propagation of uncertainty. In brief, from the signal 
amplitudes in the time domain, the variance is transferred to 
the variance of the magnitude and phase spectra in the 
frequency domain via Fourier transform. Then the 
combination between the variances of sample and reference 
measurements produces the variance in the transfer function of 
a sample. The variance eventually appears at the optical 
constants. From this analysis, the variances in the refractive 
index and in the extinction coefficient are given by, 
respectively, ݏ௡ଶሺ߱ሻ ൌ ቀ ݈ܿ߱ቁଶ ቊ ୱୟ୫ሺ߱ሻ|ସܧ|ୱୟ୫ሺ߱ሻܣ ൅ ୰ୣ୤ሺ߱ሻ|ସቋܧ|୰ୣ୤ሺ߱ሻܣ , (3a) 

κଶሺ߱ሻݏ ൌ ቀ ݈ܿ߱ቁଶ ൝ ୱୟ୫ሺ߱ሻ|ସܧ|ୱୟ୫ሺ߱ሻܤ ൅ ୰ୣ୤ሺ߱ሻ|ସ൅ܧ|୰ୣ୤ሺ߱ሻܤ ቆ݊ሺ߱ሻ െ ݊଴݊ሺ߱ሻ ൅ ݊଴ቇଶ ௡ଶሺ߱ሻ݊ଶሺ߱ሻቋݏ , (3b) 

where ܣୱୟ୫ሺ߱ሻ ൌ ෍ℑଶሾܧୱୟ୫ሺ߱ሻexpሺ݆߱݇Δሻሿݏா౩౗ౣଶ௞ ሺ݇ሻ , (4a) ܣ୰ୣ୤ሺ߱ሻ ൌ ෍ℑଶሾܧ୰ୣ୤ሺ߱ሻexpሺ݆߱݇Δሻሿݏா౨౛౜ଶ௞ ሺ݇ሻ , (4b) ܤୱୟ୫ሺ߱ሻ ൌ ෍ℜଶሾܧୱୟ୫ሺ߱ሻexpሺ݆߱݇Δሻሿݏா౩౗ౣଶ௞ ሺ݇ሻ , (4c) ܤ୰ୣ୤ሺ߱ሻ ൌ ෍ℜଶሾܧ୰ୣ୤ሺ߱ሻexpሺ݆߱݇Δሻሿݏா౨౛౜ଶ௞ ሺ݇ሻ. (4d) 

Here, ݏா౨౛౜ଶ ሺ݇ሻ and ݏா౩౗ౣଶ ሺ݇ሻ are the variances associated with 
the reference and sample signals, respectively; k is the 
sampling index number and Δ is the sampling interval, and 
thus kΔ is the time; ℜଶ and ℑଶ denote the square of real and 
imaginary parts, respectively. The summation is carried out 
over the time duration of the recorded T-ray signal. In the 
equations, all parameters utilize mean values. The proposed 
model in Eq. 3 is successfully validated with Monte Carlo 
method. A complete derivation for Eq. (3) can be found in [1]. 

III. OPTIMIZATION OF THE SAMPLE THICKNESS 
In Eq. 3a, ܧୱୟ୫ሺ߱ሻ can be expressed in terms of ܧ୰ୣ୤ሺ߱ሻ, 

and thus Eq. 3a is rearranged to 

௡ଶሺ߱ሻݏ  ൌ ଶܥ݈ ቊ Ԣୱୟ୫ሺ߱ሻexpሺെ4κ݈߱/ܿሻܣ ൅ ୰ୣ୤ሺ߱ሻቋܣ , (5) 
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where ܥ ൌ ܿଶ ሼ߱ଶ|ܧ୰ୣ୤ሺ߱ሻ|ସሽ⁄ Ԣୱୟ୫ሺ߱ሻܣ  ; ൌ ୱୟ୫ሺ߱ሻܣ ሺ߬߬Ԣሻସ⁄ . 
By minimizing Eq. (5) with respect to the thickness l we 
obtain the optimum thickness, 

 ݈୭୮୲ ൌ ሺ߱ሻߢ߱ܿ ൌ  ሺ߱ሻ . (6)ߙ2

A sample with optimum thickness attenuates the magnitude 
of the incident pulse by the factor of 1/e. The optimum 
thickness turns out to be a distance that is equal to twice the 
penetration depth. Optimization of the sample thickness by 
starting from Eq. 3a also delivers the same outcome. A 
complete derivation for Eq. 6 can be found in [2]. 

IV. RESULTS 
The measurement is carried out with normal-grade PVC, 

which is preformed in a rod shape. The rod with a diameter of 
50 mm is cut into four cylindrical segments, with the thickness 
of 1, 10, 20, and 50 mm. The surfaces of these samples are 
well polished to minimize scattering. Each sample is measured 
with a collimated beam from the THz-TDS system in the axial 
direction for ten scans, and each scan is made after the 
previous scan within 30 s. 

The optimum thickness for PVC, which supposedly yields 
the lowest variance in the measured optical constants, is 
determined from the absorption coefficient using the proposed 
model in Eq. 6. Fig. 1 illustrates the optimum thickness 
determined directly from the measured coefficient and from 
the fitting model. It can be seen that at frequencies around 1.0 
THz, a sample thickness of 1 mm would provide the lowest 
variance of the optical constants. In addition, at low 
frequencies the optimum thickness increases by around one 
order of magnitude. 

Fig. 2 shows the standard deviations of the optical constants 
for the four PVC samples, in terms of the unprocessed scatter 
plots and the fitting parametric curves. It is evident that at 
0.05-0.2 THz, the 50-mm-thick sample provides the lowest 
standard deviation among the four samples; at 0.2-0.25 THz, 
the 20-mm-thick sample; at 0.25-0.6 THz, the 10-mm-thick 
sample; and above 0.6 THz, the 1-mm-thick sample. This 
optimum relation is in perfect agreement with the prediction in 
Fig. 1, which is derived using our optimal-thickness model. 
The improvement in measurement accuracy can be observed, 
for example, by comparing the standard deviations of the 1-
mm-thick and 50-mm-thick sample. At around 0.1 THz the 
standard deviation for the thicker sample is ≈4×10−5 and that 
for the thinner sample is ≈2×10−3, or the improvement of the 
standard deviation is by almost two orders of magnitude. 

V. USAGE OF THE MODEL 
When selecting the optimum thickness, two options are 

available: (i) have the widest measurement bandwidth, or (ii) 
have the lowest uncertainty at a particular frequency. If the 
widest bandwidth is required, the maximum absorption value 
within the reliable frequency range of the system should be 
used in determination of the optimum thickness. This results 
in a thinner sample thickness thus retaining the bandwidth of 
the system and avoids dynamic range limited distortion, while 

providing a reasonably low uncertainty in the measurement. 
There is a possibility that one might need to observe a 
sample's response in a narrow frequency range, with the 
highest precision available from the instrument, for example, 
in order to resolve a weak absorption peak hidden beneath the 
noise or to quantify the ratio of a mixture. In such cases, the 
optimum thickness calculated at the frequency of interest is 
indeed the best selection. 

 

 
 

Figure 1. Optimum thickness for PVC. The solid line is a 
second-order polynomial fit to the absorption coefficient 
between 0.05 and 0.55 THz.  

 
 

Figure 2. Standard deviations in the optical constants of PVC. 
Each standard deviation is determined from ten reference and 
ten sample signals. The missing part of the profiles in the high 
frequency range corresponds to the low SNR portion of the 
measured spectra. 

VI. CONCLUSION 
This work offers a criterion in selecting the optimum 

thickness of a sample. Provided that the absorption of a 
sample material at a frequency of interest can be estimated or 
approximated, the proposed model can predict the optimum 
thickness, which gives the lowest uncertainty in measurement. 
The derivation of the criterion is carried out via minimizing 
the uncertainty in optical constants—in terms of the variance 
or standard deviation—which is affected by the variance in 
measured time-resolved signals. The model is validated with a 
number of samples. More experiments can be found in [2]. 
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