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Abstract

Two fundamental processes of modulation recognition are
parameter extraction and feature selection. Parameter
extraction determines unique characteristics of the signal such
as frequency, phase, and amplitude. Parameters may also
include statistical measures such as standard deviation, and
nth-order moments and cumulants. This paper provides a brief
review of two parameters, coherence and entropic distance,
and re-introduces a statistical measure of signal-to-noise ratio
(SNR). It also discusses the usefulness of these parameters in
automatic modulation recognition ofHF signals.

1 Introduction

A tendency of modem communication systems (very often at
frequencies above 800 MHz) is to achieve high bandwidth
communications by moving to higher and higher frequencies.
This push often comes with a perception that high-frequency
(HF) communications is obsolete. High-frequency
communications is alive, however, and indeed undergoing
resurgence despite the advances of modem communications.
Spectrum mangement organisations monitor the HF spectrum
to control and enforce licensing of HF users, while defence
agencies are interested in the HF spectrum, with respect to
surveillance and back-up communications. These activities
usually require systems capable of determining the location of
a source of transmission, separating valid signals from
interference and noise, and identification of signal type (or
modulation recognition).

Modulation recognition generally comprises three major
steps: parameter extraction, feature selection, and
classification. Sometimes parameter extraction and feature
selection are combined and called feature extraction.

Parameter extraction attempts to isolate unique characteristics
of the signal so that the signal can be classified. Fundamental
characteristics are frequency, phase, and amplitude, but
statistical measures (e.g. standard deviation, nth-order

moments, nth-order cumulants) are not uncommon. Whatever
the parameters, they are chosen to form an N-dimensional
vector.

Feature selection then transforms the N-dimensional
parameter space into an M-dimensional feature space, where
M :s N. With an optimal choice of parameters, the M­
dimensional feature space consists of M orthogonal basis
vectors. This may not be possible for a sub-optimal
parameter list, but the more orthogonal the basis vectors the
easier a classifier can separate signal types.

The role of classification is to identify the modulation type
based on the selected features. Associations are normally
made through statistical methods, decision theoretic methods,
artificial neural networks (ANNs), or pattern recognition
algorithms.

Our focus is on the combined feature extraction step. So,
what are useful features for automatically recognising a given
HF signal?

2 Parameters for Modulation Recognition

Amongst the literature there are many parameters under
investigation for the purposes of modulation recognition
[1,2,4,5,13,14,15,17,18,19,20]. They include characteristics
such as power-spectral density (PSD), signal-noise ratio
(SNR), bandwidth, instantaneous frequency and amplitude,
and statistical measures (including high-order moments and
cumulants).

Research described in the literature suffers problems related
to assumptions about the transmission medium and methods
of validation. In most cases, an assumption of Gaussian noise
is made, which is rarely valid in practice [11,16]. And few, if
any of the papers, apply modulation recognition algorithms to
real signals. In our context, real implies signals propagating
by multiple modes with co-channel interference and non­
Gaussian noise. In fact, it is well known, that HF noise is
impulsive [11,16].
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Our previous work [6,7,8,9,10] discusses coherence and
entropic distance in detail, however we briefly review these
parameters here. We also re-introduce a parameter, first
proposed by Aisbett [1], which estimates the true power of a
signal contaminated by noise. For the sake of a name, we call
this parameter the Aisbett Hash Function. With a slight
alegrabic modification, the function can also be used to
estimate SNR.

2.1 Coherence

measure of the similarity or dissimilarity of two information
sources, A and B, as representative of the true entropy. The
method compresses a long sequence A from A and subtracts
this compressed length from the length of the compressed
sequence A+b, where A+b is the concatenation of A and a
small sequence b from B. This is the entropy of A
(designated by ~Ab)' In a similar manner they compute the
entropy of B as ~Ba and the self-entropies ~Aa and ~Bb' They
then defme the relative entropy between A and B as

where Ibl is the length of b, and the relative entropy between
B and A as

The coherence function [4] (sometimes called the magnitude
squared coherence) is a ratio of power spectral densities and
provides a measure of the similarity of two signals at specific
frequencies. It is analogous to correlation in the frequency
domain. Given two signals, X and Y, the coherence is defmed
as

(1)
s = /:i.Ba -/:i.Aa

BA lal

(2)

(3)

where Pxx(f) is the auto-power spectral density of signal X,
Pyy(f) is the auto-power spectral density of signal Y, and Pxy(f)
is the cross-power spectral density of signals X and Y.

where lal is the length of a. The total entropy, or entropic
distance, between the two information sources is then by
defmition

Entropic distance is analogous to a measure of the difficulty
that an English-speaking person has in learning Chinese or
the difficulty that a Chinese-speaking person has in learning
English.

At each frequency, the coherence function varies between 0
and 1 and indicates the similarity between X and Y. If the
value of the function at a particular frequency is close to
unity, it indicates that X and Yare similar at that frequency.
On the other hand, if the value of the function is near zero it
implies that the two signals are dissimilar at the particular
frequency.

S - dAb - d Bb d Ba - d Aa
T = + .s; d Aa

(4)

2.3 Aisbett Hash Function

Given two digitised signals in the time domain, X and Y, the
Aisbett Hash Function is

Our previous work [10,12] has demonstrated that entropic
distance can be used to separate real HF groundwave signals,
specifically the FSK modes of Mil-Std-188-110A (i.e. FSK
Wideband, FSK Alternate Wideband, FSK Narrowband), and
Stanag 4285 (an 8-PSK signal).

The Aisbett Hash Function is the product of the means of two
signals less their covariance. The name of the function is
derived from the way that Aisbett [1] specified the function;
#(x, Y) was used in place of the more common f{x, Y)
representation of a function.

(5a)

(5b)

2 N N

#(X,Y) = -2 IX(jT)IY(kT)
N j=l k=l

1 N
--IX(mT)Y(mT)

N m=l

#(X,Y) = 2E{X}E{Y} - E{XY},

In a practical sense, the computation of coherence is difficult.
Carter [4] suggests the use of a overlapped windowing
method, such as Welch's [22] averaged periodogram method,
to estimate the coherence. Welch's method breaks a digitised
signal (hereafter referred to as a signal segment) into
overlapping sections. Each overlapping section is detrended
and smoothed by an n-point window (e.g. Hanning,
Hamming) before an n-point Fast Fourier Transform (FFT) is
applied.

2.2 Entropic Distance

Shannon [21] defmed entropy as a measure of the uncertainty
of the occurrence of an event or the information that event
imparts when it occurs. Benedetto, Caglioti, and Loreto [3]
base their defmition of entropy on Shannon's formulation but
present a different method of computing it. They create a

Coherence is sensitive to misalignment of time signals,
number of overlapping sections, percentage of overlap, and
phase. The coherence function is therefore not useful for
FSK or PSK type signals because it is affected by the
message carried by the signals [8,9,10]. At best, the
coherence function is useful only for signals with highly
correlated messages.
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where T is the sample period, N is the number of samples in
each sequence, and EO is the expectation operator.

Power of Signal plus Noise
3 .5 ,--- - - ---.--- - - -----,-- - - - ,---- - - --,

From (5b), an estimate of signal power is simple to compute.
For a given received passband signal it can be shown that its
envelope, denoted by A(t) , is

where B(t) is the envelope of the modulating signal, ¢(t) is

the phase of the modulating signal, net) is zero-mean
narrowband Gaussian noise, and t is time. To estimate signal
power one computes

A(t) = B(t)cos fjJ(t) +n(t), (6)

· . ,_ _..~ _ _.._ _ _ _.._ _ _ _.._ -· . ,· . ,· . ,· . ,· . ,· , ,· . ,· . ,· . ,... ..... .. .... ... ............. .... ... .. ...... ..... .. .... .. ..... ...... .. .... ... ......· . ,· . ,· , ,· . ,: : ,-------'-'-----,
... ...............J L.......... -e- PSK

--i!r- PSK4
i -e- FSK
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: : ~ Slanag 4285
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Aisbett shows that (7) is an unbiased estimator of signal
power for constant-envelope signals. With a constant
envelope signal

~5·L-------'-----------'-5----1.L0--------'15

True SNR (dB)

Figure 1: True signal power plus noise power for each of the
synthetic signals (i.e. 2-PSK, 4-PSK, 2-FSK, 4-FSK, and
Stanag 4285) with added Gaussian noise.

Estimated Power of Signal
0.7 ,--- - - ---.--- - - -----,-- - - - ,---- - - --,

where cr2 is the Gaussian noise power. Equation (8)
represents the power of the baseband signal plus the power of
the noise. Then since #(A2,A2

) is proportional to sJ(t), the
estimate of SNR" can be written as

(8)

(9)

· . ,
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Figure 3: Estimated SNR for synthetic signals with zero­
mean Gaussian noise. Note the linear portion of the
curves and their eventual independence of the true SNR.
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Figure 2: Estimate of signal power computed with #(A2,A2
) .

Only for low SNR does #(A2,A2
) not provide a good

estimate ofsignal power.
Estimated SNR of Signal

where K is a normalization constant. For the present
discussion K = Y2.

Figure 1 illustrates the true signal plus noise power for each
signal versus SNR. For an SNR greater than 5 dB the noise
has little impact on the true signal plus noise power thus
showing that the true signal power for each signal is 0.5 W.
Figure 2 shows that #(A2,A2

) closely estimates the true signal
power for the constant envelope signals at a true SNR greater
than -3 dB. However, #(A2,A2

) underestimates the power of
the Stanag 4285 signal by a factor of approximately four.
This is expected because (5b) provides an estimate of the
magnitude of the envelope of a signal; for Stanag 4285 the
envelope varies and so (5b) tends toward zero.

We generate five signals with added Gaussian noise namely,
2-FSK, 4-FSK, 2-PSK, 4-PSK, and Stanag 4285 (8-PSK).
Though our goal is to apply parameters to real HF signals
with non-Gaussian noise and co-channel interference, for the
current discussion Gaussian noise is sufficient. Next we
apply (9) to the synthetic signals at various SNRs.

3 Performance of the Aisbett Hash Function
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and

Combining (7), (8), (9), and (10) results in

Estimated SNR of S ignal

Literature searches and experience with real HF signals leads
to the following suggested set of parameters to recognize the
target signals: centre frequency, bandwidth, SNR [I],
envelope, symbol frequencies, cross-Margenau-Hill
disbribution [17], kurtosis [2], signal constellation,
modulation level, auto-regressive-covariance [17], entropic
distance [9,10,12], and power spectral density.

10r----,--------,--------,--------,

4 Further Work

that B2(t) = I) the curves in Figure 3 fall upon each other in
Figure 4. The Stanag 4285 signal does not have a constant
envelope and so its estimate of SNR does not follow the trend
of the other signals.
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Figure 4: Estimated SNR of various synthetic signals with
zero-mean Gaussian noise. In this case all curves align,
save that of Stanag 4285. This is a result of ensuring that
each signal spans the entire range of -1 to +1.

(lla)

SNR
SNRe = KB 2 (t) T ,(lIb)

(1 - B2 (t )) SNRT + 2

What is more interesting is that direct application of (9)
appears to separate the signals when the true SNR is high.
The tendency towards saturation as the true SNR increases is
a result of the noise power decreasing exponentially with a
constant envelope not equal to one. If the magnitude of the
envelope, B(t) , of the modulation signal is unity then a true
linear relationship exists between the estimated SNR and the
true SNR. Consider (8) and that

Equation (9) does appear to provide useful information about
each signal. For certain ranges, Figure 3 shows that estimated
SNR follows an approximately linear (in a logarithmic sense)
relationship with the true SNR. For 2-FSK this region is
about 15 dB along the abcissa. For Stanag 4285 the region is
only about 5 dB. The linear range for all the other signals is
about 10 dB. Thus within a limited range and with suitable
scaling, Equation (9) can provide a reasonable estimate of
SNR.

In fact, if the simulation is repeated with all signals
normalized to span the entire range of -1 to +1 (thus ensuring

which says that for a constant envelope signal, with B2(t) :f. I,
the estimated SNR, SNRe, is non-linear with respect to the
true SNR, SNRT• The asymptotes in Figure 3 are thus related
to the magnitudes of their respective signal envelopes. Of
course, if B2(t) = I, then (II b) reduces to the linear equation

Thus the separation of curves, in Figure 3, is a due to
differences in the magnitudes of the envelopes of the
modulation signals. To maximise the linear range over which
(9) is useful, the magnitude of B(t) in the received signal must
be maintained as close to unity as possible. Automatic gain
control (AGe) could be applied to the baseband signal prior
to application of (9) but, in practice, it will be difficult to
ensure that B(t) is near unity at low SNR. Morever, the
separation of curves is related to the amplitude of a baseband
signal and therefore (9) cannot be used to unambigously
separate constant envelope signals.

K
SNRe = - SNRT •

2
(12)

The Cross-Margenau-Hill Distribution (CMHD), which is
related to the cross-correlation function, may separate m-ary
PSK signals while an auto-regressive covariance function
may separate m-ary FSK signals. Kurtosis provides promise
in separating BPSK, QPSK, QAM, and multi-tone signals.
Entropic distance also appears able to separate real HF
signals [9,10,12]. Other parameters that aid modulation
recognition are centre frequency, bandwidth, SNR, signal
envelope, symbol frequencies, constellation, and power
spectral densities.

Our immediate future work will be to apply the Aisbett Hash
Function to real HF signals, where real refers to signals
propagating by multiple ionospheric modes with co-channel
interference and non-Gaussian noise. Signals of interest
include m-ary FSK, m-ary PSK, multi-tone PSK, Stanag
4285, and Mil-Std-188-1IOA signals.

5 Summary

This paper reviewed coherence and entropic distance, and
summarised their suitability as paramaters for automatic
modulation recognition of HF signals. It also introduced a
method to estimate signal-to-noise ratio (SNR). Coherence is
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unsatisfactory for identifying either FSK or PSK signals.
Coherence is useful only for signals with highly correlated
messages. On the other hand, entropic distance is useful for
separating the FSK modes of Mil-Std-188-11 OA and Stanag
4285 (8-PSK). Aisbett's [1] hash function shows promise for
estimating the signal-to-noise (SNR) of a signal, but not for
direct identification of an unknown signal.
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