Astronomy, vector and the mean free path l, is never less than $\sim 10^4$ are still collected by the lens. These photons have traveled a slightly longer path through the material, and are therefore delayed somewhat.

For these samples, the product of the wave vector and the mean free path l, is never less than ~ 20, so these data represent only the weak scattering regime. However, we can also fabricate strongly scattering samples, using 0.5 mm cubes of high-resistivity silicon, ~ 20, material, and are therefore delayed somewhat.

References

Powder Detection Using THz Imaging

Shuhong Wang, Bradley Ferguson, Carmen Maurina, Derek Abbott, and X.-C. Zhang

The non-destructive scanning of mail envelopes and packages is a topic of intense current interest. A large number of techniques are under investigation for the rapid screening of mail to detect illegal and/or harmful substances such as explosives, illicit drugs and bioterrorism substances such as the Anthrax causing bacterium Bacillus anthracis. Terahertz imaging has a number of important advantages in this application setting. Firstly, paper, plastics, cardboard and many other packaging materials are largely transparent to THz radiation. Additionally, the coherent detection of THz pulses provides frequency-dependent phase-sensitive measurements of the response of the sample. This information may one day lead to a reliable method for the detection of specific substances in mail.

The chirped probe beam THz imaging system (CPTI) encodes the time varying THz information directly onto a chirped probe beam. The chirped probe beam can be thought of as an optical pulse with a continuous frequency distribution, which is linear function of pulse delay. Therefore, the information at certain time is encoded at a corresponding frequency. By dispersing the probe beam in the frequency domain, the encoded information can be extracted. The full THz waveform is measured simultaneously, thereby CPTI can dramatically accelerate the imaging speed.

We placed four different powdered samples: flour, salt, baking soda and seasoning inside a paper envelope and used the CPTI system to scan the envelope in x and y dimensions. This took approximately 8 minutes because we scanned the envelope in 2 dimensions. Using a 1D chirped pulse THz imaging system it is feasible to attain a potential throughput of 12 envelopes/minute. 800 milligrams of each of the sample powders were placed on double sided cellophane and attached to a piece of paper as shown in Fig. 1(a) and placed in an envelope. The envelope was imaged and the transmitted THz waveform was measured at each pixel. The Fourier transform of the THz waveform provides information on the frequency dependent scattering, absorption and refractive index of the sample. In this way the powders can be detected. Figure 1(b) shows a THz image produced by plotting the intensity of the THz pulse at a frequency of 0.3 THz in Fig. 1(c) we have used simple classification algorithms to differentiate between the different powders. A linear discriminant classifier was trained using the responses for 100 random pixels of each powder then the whole image was classified.

To more accurately assess the applicability of THz imaging to Anthrax detection we considered the samples of Bacillus thuringiensis (BT) bacteria. Several bacilli produce spores that are physically and chemically very similar to those produced by all bacilli, including B. thuringiensis, which is commonly used for insect control in gardens and is non-pathogenic to man and other mammals. Approximately 500 milligrams of B. thuringiensis spore flakes were placed inside an envelope and imaged using the CPTI system. Fig. 2 shows the envelope containing the BT spores and Fig. 3 shows the THz image of the envelope using the amplitude of the responses at 0.3 THz. The spores are clearly visible.

We have shown that THz imaging can detect powders inside envelopes at a concentration of 80 milligrams/cm2 and that in a carefully controlled experiment classification algorithms can be used to differentiate between different types of powders. We have also presented images of bacteria spores inside envelopes and will demonstrate the performance of classification algorithms in detecting B. thuringiensis.

References

Three Dimensional Imaging Using T-ray Computed Tomography

Bradley Ferguson, Shuhong Wang, Doug Gray, Derek Abbott, and X.-C. Zhang

References

For over a decade it has been known that terahertz time-domain spectroscopy systems can be...