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Pulsed THz spectroscopy provides a new method 
for probing the tertiary structure and hydration 
of biomolecules. In proteomics applications, the 
response of a protein-protein structure must be 
probed quickly and non-invasively. THz-fre- 
quency radiation lies in the far infrared, a region 
associated with structural motion modes of large 
molecules. The THz region has been difficult to 
probe in the past with Fourier Transform In- 
frared (FTIR) techniques, but recently the advent 
of pulsed THz spectroscopy (PTS) has enabled 
the study of molecular denaturation and hydra- 
tion.’ We are interested in using PTS to charac- 
terize the conformation and hydration of enzy- 
matic proteins for biochip analysis. 

We present measurements of the refractive 
index and extinction coefficient of organic sol- 
vents commonly used in studying protein activ- 
ity. Our spectroscopic instrument is a pulsed THz 
system, based on a 100-fs Ti:Sapphire laser, sur- 
face current generation and electro-optic detec- 
tion. We measure directly the refractive index, n, 
and extinction coefficient, k, of common organic 
solvents. The THz-domain n and k for three of 
our organic solvents are shown in Table 1. The re- 
fractive indicies of the solvents at optical frequen- 
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CFD6 Fig. 1. Comparison between the FIR 
refractive indicies of hydrated and anhydrous 
toluene. 

cies are included for reference. n and k are given 
over a range, 0.2 to 2 THz, which approximately 
spans the bandwidth of our THz system. Table 1 
shows that the organic solvents have very low ab- 
sorption in the THz range. Low THz absorption 
is a property of non-polar solvents that makes 
them ideal media for TPS.’ 

We mount the samples in disposable cuvettes. 
The cuvettes have 1-mm-thick walls, n of 1.525 
and k of 0.002, and a 4-mm path length. We esti- 
mate the material parameters for our samples 
using an iterative technique. We test both anhy- 
drous solvents, dehydrated over molecular sieves, 
and solvents mixed with water before phase sepa- 
ration. In iso-octane and hexane, n and k are 
largely the same for hydrated and anhydrous sol- 
vents. This is to be expected considering they 
have low water miscibility. The last column in 
Table 1 shows the maximum weight percent 
[w/w] solubility of water in each solvent at 20°C. 
Controlling the water content of the solvents is 
critical in protein spectroscopy. 

Figure 1 compares the refractive indicies of 
hydrated and anhydrous toluene. Toluene has a 
higher solubility of water than hexane and iso- 
octane and the refractive index shows a marked 
increase with hydration. Water content is an im- 
portant parameter in studying proteins in or- 
ganic solvents. The hydration of enzymatic pro- 
teins has a profound effect on their conformation 
and reactivity and is difficult to measure non-in- 
vasively with other techniques? Preliminary re- 
sults for iso-octane, toluene and cyclohexane 
show that the protein refractive index is pro- 
foundly affected by even small amounts of water 
present in the solvents. 

We will present a detailed study of the hydra- 
tion of protein in the non-polar hydrophilic sol- 
vent 1,4-dioxane. 

CFD6 Table 1 Table of estimated THz optical constants of 
organic solvents used in studying protein suspensions. The 
measurement accuracy of n and k is better than 20.005. 

Freq [w/w]% 
Solvent (THz) n k noptical HzO 

iso-octane 0.2 1.421 0.003 1.3914 0.006 

n-hexane 0.2 1.408 0.008 1.3749 0.01 

toluene 0.2 1.555 0.015 1.4969 0.03 

2 1.415 0.003 

2 1.404 0.002 

2 1.540 0.008 
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1. Introduction 
The birefringence behavior of liquid crystals 
(LCs) is well known and extensive utilized for the 
modulation of visible and infrared beams. How- 
ever, knowledge of the dielectric and electro- 
optic properties of the LCs in millimeter and sub- 
millimeter frequency region of has remained 
incomplete. Terahertz (THz) time-domain spec- 
troscopy, together with its unique time-resolved 
feature and high signal-to-noise ratio, has be- 
come a powerful tool for studying the electro- 
magnetic properties of materials in the millime- 
ter and submillimeter frequency region.’’2 In this 
paper, we present the experimental results of the 
refractive indices of nematic LCs 5 CB and a pre- 
liminary result of electrically controlled birefrin- 
gence. 

2. Results and discusslons 
A reference of temporal THz waveform is first ob- 
tained by introducing a vacant cell between the 
THz transmitter and the receiver. Subsequently, a 
LC cell is introduced in the path of the THz beam 
and a second set of waveform is taken. The spec- 
tra of THz transient can be obtained by applying 
a fast Fourier transform (FFT) to the time do- 
main waveform. Dividing the spectra obtained 
with a sample by the spectra obtained without a 
sample yields the transmission function of the 
sample. The refractive indices of sample can be 
obtained by solving the transmission function of 
the sample. Since a nematic LC is a uniaxial crys- 
tal; the information for n, and no of LC can be 
obtained by adjusting the director of LC parallel 
and perpendicular to the direction of polariza- 
tion of THz wave, respectively. In our case, it’s 
easy to achieve by rotating the LC cell. Figure 1 
shows the n, and no of 5 CB in -0.2-1.4 THz 
regime. There is no sharp resonance in this fre- 
quency range. Both Re(n,) and Re(n,,) increase 
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