Effects of vagal blockade on the complexity of heart rate variability in rats
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Abstract— In this paper we investigate the influence of va-
gal blockage on heart rate variability complexity measures.
Nine conscious rats are injected with methyl-scopolamine
brobide (50 pg/kg s.c.). We analyze 10 minute segments of
beat-to-beat intervals before and after injection by standard
time and frequency domain methods, compression entropy,
sample entropy, Poincaré plot, detrended fluctuation analysis
and symbolic dynamics. All parameter domains show changes
in heart rate variability after vagal blockade, indicating a
decrease in heart rate complexity. In conclusion, vagal modu-
lation plays an important role in the generation of heart com-
plexity in rats or, in other words, heart rate complexity meas-
ures are sensitive to vagal heart rate modulation.
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I. INTRODUCTION

The heart rate underlies beat-to-beat variations, reflecting
modulations mediated by vagal and sympathetic branches of
the autonomic nervous system. Heart rate variability (HRV)
analysis has shown prognostic significance in patients after
acute myocardial infarction [1] and in the diagnosis of auto-
nomic neuropathy [2]. Furthermore, it is used in various
research settings such as sports [3] or obstetrics [4].

The quantification of HRV is basically a time series
analysis task, and numerous approaches have been pro-
posed, including traditional time and frequency domain
measures [5], but also measures from complex systems
science [4,6,7,8]. Although the sensitivity of some of those
new measures often appeared superior to standard time and
frequency domain measures, their physiological meaning is
hardly understood and their interpretation remains difficult.

To assess their sensitivity to vagal heart rate modulation
we investigate the impact of vagal blockade on HRV com-
plexity measures in a rat model.

1I. METHODS

A. Animal preparation and experimental protocol

The study is performed on nine male Wistar Hooded rats
weighing 250-300 g. Experiments are conducted in accor-

dance with the European Community Council Directive of
24 November 1986 (86/609/EEC), and are approved by the
Flinders University Animal Welfare Committee. During
preliminary  surgery, telemetric ECG  transmitters
(TA11CA-F40, Data Science International, USA) are im-
planted into the peritoneal cavity under isoflurane (1.5% in
100% oxygen) anesthesia. On the day of experiment, ECG
is recorded before and after administration of methyl-
scopolamine bromide (50 pg/kg s.c., Sigma, USA), a vagal
blocker that does not cross blood-brain barrier. Analogue
signal is acquired using the MacLab interface and Chart
software (ADInstruments, Sydney, Australia).

B. Heart rate variability analysis

Pre-processing: RR intervals series are extracted from
the ECG recording, using the Chart® software (ADInstru-
ments, Sydney, Australia). Subsequently, RR time series are
scanned and manually edited. Artifacts and ectopic beats are
filtered, resulting in a normal-to-normal (NN) interval time
series. For further analysis we select a segment of a 10 min-
ute length, starting 15 minutes prior to the vagal blockade
injection in order to obtain HRV baseline values. To ana-
lyze HRV during vagal blockade, we select ten minute ep-
ochs, beginning five minutes after injection.
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Fig. 1 Beat-to-beat interval time series in a conscious rat prior and after
injection of methyl-scopolamine. The NN interval as well as heart rate
variability deceases.
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Time domain analysis: For traditional time domain
analysis of HRV we compute meanNN, the mean beat-to-
beat interval of normal heart beats, its standard deviation
sdNN, and the root-mean-square of successive beat-to-beat
differences rmssd.

Frequency domain analysis: For frequency domain
analysis of HRV we generate equidistant time series, using
a linear interpolation at 20 Hz. Subsequently, the power
spectrum is estimated, using FFT and a Blackman-Harris
window. Total power (P: 0-3Hz), very low frequency
power (VLF: 0.03-0.25 Hz), low frequency power (LF:
0.25-1 Hz) as well as high frequency power (HF: 1-3 Hz)
are computed.

Poincaré plots: Poincaré plots provide a visual way to
study dynamics underlying HRV. As commonly used, NN
intervals are plotted against the previous ones (i.e. NN,. vs.
NN,). Although this approach is somewhat simplified with
regard to the non-linear systems theoretical intention, it is a
useful tool for HRV analysis. Usually, an ellipsoid shape is
fitted to the points and the short axis SD/ and long axis SD2
are taken as measures. Although the Poincaré plot itself may
capture non-linear characteristics of HRV, SD/ as well as
SD?2 capture only linear characteristics [9].

Compression entropy: To study the short-term complex-
ity of beat-to-beat fluctuations we recently introduced a
compression based complexity measure [8]. From the point
of information theory, the smallest algorithm that produces
a string is the entropy of that string (Chaitin-Kolmogorov
entropy). Although it is theoretically impossible to develop
such an algorithm, data compression techniques might pro-
vide a good approximation. We apply a modified version of
the LZ77 algorithm for lossless data compression intro-
duced by Lempel and Ziff in 1977 [10]. The algorithm is
based on a sliding window technique and searches for
matching sequences. It keeps the w, the most recently en-
coded source symbols (sliding window of size w). The not-
yet-encoded sequence of symbols is stored in the look-
ahead buffer of size b. The encoder positioned at p looks for
the longest match of length n between the not-yet-encoded
n-string Xgﬂl‘l in the look-ahead buffer and the already
p—w+v+n-1
p—w+v
position v. Thus, the matching string of n symbols is simply
encoded by encoding the integer numbers n and v, i.e. a
pointer to the previous occurrence of this string in the slid-
ing window. Then the position and length of the matching
sequence are stored. The ratio of the uncompressed to the
compressed file, called compression entropy H.,, is used as

complexity measure. We set b = 3 and w = 7 as previously
published [8].

encoded string X in the window beginning at
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Symbolic Dynamics: The concept of symbolic dynamics
allows a simplified description of the dynamics of a system
with a limited amount of symbols. Methods based on sym-
bolic dynamics have already been successfully applied to
HRV analysis providing some more global information
about the underlying system. In this study we employ the
technique proposed by Voss et al. [6]. The difference be-
tween each NN interval and mean NN is transformed into
an alphabet of 4 symbols {0, 1, 2, 3}. Symbols ‘0’ and’2’
reflect low deviation (decrease or increase) from the mean
NN interval, whereas ‘1’ and ‘3’ reflect a stronger deviation
(decrease or increase over a predefined limit). Subsequently,
the symbol string is transformed to words (bins) of three
successive symbols. The distribution of word types reflects
some nonlinear properties of HRV (see [6] for detailed
information). From this symbolic dynamics the following
parameters are calculated: WPSUM13: words that contain
only symbols ‘1’ and ‘3’ reflecting high variability;
WPSUMO0?2: words that contain only symbols ‘1’ and ‘3’
reflecting high variability; FORBWORD: number of word
types that occur seldom, i.e. with a probability less 0.001.

Using a modified symbol transformation consecutive NN
differences less than 2 ms are coded as ‘0’ and otherwise as
‘1’. In this way two further parameters are obtained:
PLVAR?2: percentage of words of length 6 that contain only
‘0’, reflecting a low variability; PHVAR2: percentage of
words of length 6 that contain only ‘1°, reflecting a high
variability.

Sample entropy: Sample entropy (SampEn) calculates the
probability that epochs of window length m that are similar
within a tolerance  remain similar at the next point.
SampEn is precisely the negative natural logarithm of the
conditional probability that a dataset of length », having
repeated itself within a tolerance r for m points, will also
repeat itself for m + 1 points, without allowing self-matches.
In agreement with previously published studies we choose
values of » =0.25 and m=2 [4].

Detrended fluctuation analysis: The DFA technique has
been developed to analyze long-range correlations (long-
memory dependence) in non-stationary data, where conven-
tional fluctuation analyses such as power spectra and Hurst
analysis cannot be reliably used [7]. The method works as
follows:

1. Computl.e the cumulative sum C(k):z‘f_l[s(k)_ 5] of

the time series s where 5 is the mean of S (using the
concept of Random-Walk-Analysis).

2. Compute the local trend ¢, (k) within boxes of varying
sizes n (least square fit).

3. Compute the root mean square of the detrended time
series in dependency on box size n as
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F(n)= \/1 g lc(k)-c;, (k)]z , where N denotes the size
N k=1

of S.
4. Plotlog;, F(n) against log;g n.

If the data displays long-range dependence then F(n) ~
n“, where a is the scaling exponent. For stationary data with
scale-invariant temporal organization, the Fourier power
spectrum S(f) is S(f) ~ f?, where the scaling exponent £ is
related to a in the following way: f = 20-1. Values of 0 < a
< 0.5 are associated with anti-correlation (i.e. large and
small values of the time series are likely to alternate). For
Gaussian white noise o = 0.5. Values of 0.5 < a < 1 indi-
cate long-range power-law correlations (i.e. large values of
the time series are likely to be followed by large values).
Values 1 < a< 1.5 represent stronger long-range correla-
tions that are different from power-law where o = 1.5 for
Brownian motion. We compute two scaling exponents, ap
and ayr that are related the LF and VLF frequency ranges
as defined above. In order to estimate frequency values f,
from the segment size n of DFA, in Hertz, the segment sizes
are related to the mean heart rate (meanNN'), ie. f, =
meanNN"'n [11].

Table 1 Heart rate variability measured in nine rats before (baseline) and

after injection of methyl-scoplamine (vagal blockade) displayed as medians

and inter-quartile ranges as well as p-values of the Wilcoxon test for paired
comparisons of medians

HRYV measure baseline vagal blockade p
meanNN 179 [178 — 198] 144 131 - 155] 0.0039
sdNN 7.6 [5.0-10.1] 4.3[4.0-5.0] 0.098
Rmssd 2.5[2.1-29] 0.8[0.8-1.0] 0.0039
P 33.9[15.8-45] 13.6 [8.6 —21.7] 0.30
VLF 7.2[6.2-11.9] 1.7[1.1-2.3] 0.0039
LF 1.54[0.74 — 2.33] 0.11[0.10-0.18] 0.0039
HF 1.63[0.90 — 2.33] 0.220.21 -0.32] 0.0039
H. 0.41[0.39 - 0.43] 0.31[0.30-0.31] 0.0039
SD1 1.8[1.5-2.1] 0.6 [0.5-0.7] 0.0039
SD2 10.6 [7.0 — 14.3] 6.1[5.6-7.1] 0.098
WPSUMI13  0.11[0.04 —0.24] 0.06 [0.04 - 0.18] 0.57
WPSUM20  0.73 [0.58 — 0.94] 0.92[0.75 - 0.92] 0.30
FORBWORD 42 [42 —42] 42 [42 - 44] 1
PLVAR2 0.15[0.04-0.17] 0.94 [0.87 — 0.96] 0.0039
PHVAR2 0.016 [0.003 — 0.024] 0.000 [0.000 —0.000] 0.0039
SampEn 1.00 [0.84 — 1.19] 0.420.33 -0.73] 0.074
oLr 0.96 [0.85 — 1.04] 1.01 [0.98 — 1.18] 0.16
OvLF 1.31[1.22 - 1.34] 1.41[1.38 - 1.44] 0.0039
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1. RESuLTS

After injection of methyl-scopolamine, a vagal blocker,
the heart rate increases, i.e. meanNN reduces in all rats.
Fig.1 shows an example of the NN interval time series be-
fore and after injection. For statistical comparison of HRV
measures we compute group medians, inter-quartile ranges
as well as the Wilcoxon test. Results are summarized in
Tab.1.

The overall HRV, as measured in the time domain via
sdNN, 1is reduced in trend, but does not reach statistical
significance. A more detailed analysis of HRV reveal dras-
tically reduced beat-to-beat variability (rmssd). The fre-
quency domain analysis shows that the high (HF), low fre-
quency (LF), and very low frequency (VLF) power is
reduced, whereas the overall power is decreased in trend
only.

The Poincaré plot based analysis shows significantly re-
duced short-term fluctuations (SD/) and nearly significant
reduction in SD2.

The compression entropy is also significantly reduced af-
ter vagal blockade.

Symbolic dynamics based analysis reveals an increase of
low variability patterns (PLVAR2) paralleled by a decrease
in high variability patterns (PHVAR?2), whereas the other
parameters are not significantly changed.

The sampling entropy is reduced after vagal blockade,
but does not reach statistical significance.

Scaling analysis by means of DFA shows increased cor-
relations after vagal blockade in the VLF range.

IV. DiscussioN

In this paper we study HRV, particularly its complexity
measures, and changes in these measures caused by vagal
blockade in conscious rats. It is well known that vagal
blockade leads to an increase in heart rate paralleled by a
decrease in variability in the high frequency range [12].
Little is known, however, about the effect of vagal blockade
on the complexity of HRV or, in other words, about the
sensitivity of complexity measures to vagal modulation of
the heart rate. Our data shows the typical increase in heart
rate paralleled by a decrease in HRV after vagal blockade.
Besides the decrease in HF and rmssd we find LF oscilla-
tions to be almost vanished, suggesting that without external
stress, LF fluctuations in heart rate are almost completely
caused by vagal mechanisms. But also the VLF oscillations
are significantly reduced during vagal blockade.

This broad reduction in HRV also affects most of the
complexity measures, showing a decreased complexity. The
compression based measure H,. assesses fluctuations of
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heart rate within a short time window and is therefore sensi-
tive to vagal modulations. Looking at the Poincaré plot,
SD1 reflects beat-to-beat changes that are exclusively medi-
ated by the vagal pathway whereas, SD2 assesses also
slower dynamics that might be caused by other regulatory
systems, external stimuli or animal’s movements, and con-
sequently shows less sensitivity to vagal modulations.

The contradictory behavior of the Symbolic Dynamics
measures PLVAR2 and PHVAR2 that assess beat-to-beat
dynamics over 7 consecutive heart beats also reflect the low
HRYV after vagal blockade. In particular there are no more
heart rate patterns with consecutive beat-to-beat changes
higher than 2 ms (PHVAR?2).

Sampling entropy is less sensitive to vagal blockade
since this regularity statistic is based on the overall variabil-
ity of the NN time series that is also influenced by slow
trends that are not caused by vagal modulations.

The DFA shows a steeper slope in the VLF range and
therefore increased long-range correlations after vagal
blockage, which also suggest that vagal modulations cause a
certain amount of irregularity in HRV and consequently a
vagal blockade is leading to a more regular behavior at
larger scales.

Given that heart rate modulations mediated by vagal ef-
ferents mainly reflect cardio-respiratory coupling it could be
speculated that the irregularity of respiration, including
factors such as respiratory frequency, tidal volume, ratio
between inspiration and respiration, etc. is the major source
of the complexity found and assessed with the above de-
scribed measures. This emphasizes the necessity of re-
cording respiration in HRV analysis studies.

V.CONCLUSIONS

Vagal blockade of heart rate control in rats shows the
typical increase in heart rate paralleled by a decrease in
HRV. Several complexity measures are decreased and are
therefore sensitive to vagal heart rate modulation.
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