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Abstract— In this paper we investigate the influence of va-
gal blockage on heart rate variability complexity measures. 
Nine conscious rats are injected with methyl-scopolamine 
brobide (50 µg/kg s.c.). We analyze 10 minute segments of 
beat-to-beat intervals before and after injection by standard 
time and frequency domain methods, compression entropy, 
sample entropy, Poincaré plot, detrended fluctuation analysis 
and symbolic dynamics. All parameter domains show changes 
in heart rate variability after vagal blockade, indicating a 
decrease in heart rate complexity. In conclusion, vagal modu-
lation plays an important role in the generation of heart com-
plexity in rats or, in other words, heart rate complexity meas-
ures are sensitive to vagal heart rate modulation. 
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I. INTRODUCTION 

The heart rate underlies beat-to-beat variations, reflecting 
modulations mediated by vagal and sympathetic branches of 
the autonomic nervous system. Heart rate variability (HRV) 
analysis has shown prognostic significance in patients after 
acute myocardial infarction [1] and in the diagnosis of auto-
nomic neuropathy [2]. Furthermore, it is used in various 
research settings such as sports [3] or obstetrics [4]. 

The quantification of HRV is basically a time series 
analysis task, and numerous approaches have been pro-
posed, including traditional time and frequency domain 
measures [5], but also measures from complex systems 
science [4,6,7,8].  Although the sensitivity of some of those 
new measures often appeared superior to standard time and 
frequency domain measures, their physiological meaning is 
hardly understood and their interpretation remains difficult. 

To assess their sensitivity to vagal heart rate modulation 
we investigate the impact of vagal blockade on HRV com-
plexity measures in a rat model. 

II. METHODS 

A. Animal preparation and experimental protocol 

The study is performed on nine male Wistar Hooded rats 
weighing 250-300 g. Experiments are conducted in accor-

dance with the European Community Council Directive of 
24 November 1986 (86/609/EEC), and are approved by the 
Flinders University Animal Welfare Committee. During 
preliminary surgery, telemetric ECG transmitters 
(TA11CA-F40, Data Science International, USA) are im-
planted into the peritoneal cavity under isoflurane (1.5% in 
100% oxygen) anesthesia. On the day of experiment, ECG 
is recorded before and after administration of methyl-
scopolamine bromide (50 µg/kg s.c., Sigma, USA), a vagal 
blocker that does not cross blood-brain barrier. Analogue 
signal is acquired using the MacLab interface and Chart 
software (ADInstruments, Sydney, Australia). 

B. Heart rate variability analysis 

Pre-processing: RR intervals series are extracted from 
the ECG recording, using the Chart® software (ADInstru-
ments, Sydney, Australia). Subsequently, RR time series are 
scanned and manually edited. Artifacts and ectopic beats are 
filtered, resulting in a normal-to-normal (NN) interval time 
series. For further analysis we select a segment of a 10 min-
ute length, starting 15 minutes prior to the vagal blockade 
injection in order to obtain HRV baseline values. To ana-
lyze HRV during vagal blockade, we select ten minute ep-
ochs, beginning five minutes after injection. 
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Fig. 1 Beat-to-beat interval time series in a conscious rat prior and after 
injection of methyl-scopolamine. The NN interval as well as heart rate 

variability deceases. 
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Time domain analysis: For traditional time domain 
analysis of HRV we compute meanNN, the mean beat-to-
beat interval of normal heart beats, its standard deviation 
sdNN, and the root-mean-square of successive beat-to-beat 
differences rmssd. 

Frequency domain analysis: For frequency domain 
analysis of HRV we generate equidistant time series, using 
a linear interpolation at 20 Hz. Subsequently, the power 
spectrum is estimated, using FFT and a Blackman-Harris 
window.  Total power (P: 0-3Hz), very low frequency 
power (VLF: 0.03-0.25 Hz), low frequency power (LF: 
0.25-1 Hz) as well as high frequency power (HF: 1-3 Hz) 
are computed. 

Poincaré plots: Poincaré plots provide a visual way to 
study dynamics underlying HRV. As commonly used, NN 
intervals are plotted against the previous ones (i.e. NNn+1 vs. 
NNn). Although this approach is somewhat simplified with 
regard to the non-linear systems theoretical intention, it is a 
useful tool for HRV analysis. Usually, an ellipsoid shape is 
fitted to the points and the short axis SD1 and long axis SD2 
are taken as measures. Although the Poincaré plot itself may 
capture non-linear characteristics of HRV, SD1 as well as 
SD2 capture only linear characteristics [9]. 

Compression entropy: To study the short-term complex-
ity of beat-to-beat fluctuations we recently introduced a 
compression based complexity measure [8]. From the point 
of information theory, the smallest algorithm that produces 
a string is the entropy of that string (Chaitin-Kolmogorov 
entropy). Although it is theoretically impossible to develop 
such an algorithm, data compression techniques might pro-
vide a good approximation. We apply a modified version of 
the LZ77 algorithm for lossless data compression intro-
duced by Lempel and Ziff in 1977 [10]. The algorithm is 
based on a sliding window technique and searches for 
matching sequences. It keeps the w, the most recently en-
coded source symbols (sliding window of size w). The not-
yet-encoded sequence of symbols is stored in the look-
ahead buffer of size b. The encoder positioned at p looks for 
the longest match of length n between the not-yet-encoded 
n-string 1-np

px +  in the look-ahead buffer and the already 

encoded string 1nvwp
vwpx −++−

+− in the window beginning at 
position v. Thus, the matching string of n symbols is simply 
encoded by encoding the integer numbers n and v, i.e. a 
pointer to the previous occurrence of this string in the slid-
ing window. Then the position and length of the matching 
sequence are stored. The ratio of the uncompressed to the 
compressed file, called compression entropy Hc , is used as 
complexity measure. We set b = 3 and w = 7 as previously 
published [8]. 

Symbolic Dynamics: The concept of symbolic dynamics 
allows a simplified description of the dynamics of a system 
with a limited amount of symbols. Methods based on sym-
bolic dynamics have already been successfully applied to 
HRV analysis providing some more global information 
about the underlying system. In this study we employ the 
technique proposed by Voss et al. [6]. The difference be-
tween each NN interval and mean NN is transformed into 
an alphabet of 4 symbols {0, 1, 2, 3}. Symbols ‘0’ and’2’ 
reflect low deviation (decrease or increase) from the mean 
NN interval, whereas ‘1’ and ‘3’ reflect a stronger deviation 
(decrease or increase over a predefined limit). Subsequently, 
the symbol string is transformed to words (bins) of three 
successive symbols. The distribution of word types reflects 
some nonlinear properties of HRV (see [6] for detailed 
information). From this symbolic dynamics the following 
parameters are calculated: WPSUM13: words that contain 
only symbols ‘1’ and ‘3’ reflecting high variability; 
WPSUM02: words that contain only symbols ‘1’ and ‘3’ 
reflecting high variability; FORBWORD: number of word 
types that occur seldom, i.e. with a probability less 0.001. 

Using a modified symbol transformation consecutive NN 
differences less than 2 ms are coded as ‘0’ and otherwise as 
‘1’. In this way two further parameters are obtained: 
PLVAR2: percentage of words of length 6 that contain only 
‘0’, reflecting a low variability; PHVAR2: percentage of 
words of length 6 that contain only ‘1’, reflecting a high 
variability. 

Sample entropy: Sample entropy (SampEn) calculates the 
probability that epochs of window length m that are similar 
within a tolerance r remain similar at the next point. 
SampEn is precisely the negative natural logarithm of the 
conditional probability that a dataset of length N, having 
repeated itself within a tolerance r for m points, will also 
repeat itself for m + 1 points, without allowing self-matches. 
In agreement with previously published studies we choose 
values of r = 0.25 and m = 2 [4]. 

Detrended fluctuation analysis: The DFA technique has 
been developed to analyze long-range correlations (long-
memory dependence) in non-stationary data, where conven-
tional fluctuation analyses such as power spectra and Hurst 
analysis cannot be reliably used [7]. The method works as 
follows: 

1. Comput1.e the cumulative sum  [ ]∑ =
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the time series s where s  is the mean of S (using the 
concept of Random-Walk-Analysis). 

2. Compute the local trend )(kcn  within boxes of varying 
sizes n (least square fit). 

3. Compute the root mean square of the detrended time 
series in dependency on box size n as 
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of S. 
4. Plot log10 F(n) against log10 n. 

If the data displays long-range dependence then F(n) ~ 
nα, where α is the scaling exponent. For stationary data with 
scale-invariant temporal organization, the Fourier power 
spectrum S(f) is S(f) ~ f- β, where the scaling exponent β is 
related to α in the following way: β = 2α-1. Values of 0 < α 
< 0.5 are associated with anti-correlation (i.e. large and 
small values of the time series are likely to alternate). For 
Gaussian white noise α = 0.5. Values of 0.5 < α ≤  1 indi-
cate long-range power-law correlations (i.e. large values of 
the time series are likely to be followed by large values). 
Values 1 < α ≤ 1.5 represent stronger long-range correla-
tions that are different from power-law where α = 1.5 for 
Brownian motion. We compute two scaling exponents, αLF 
and αVLF that are related the LF and VLF frequency ranges 
as defined above. In order to estimate frequency values fn 
from the segment size n of DFA, in Hertz, the segment sizes 
are related to the mean heart rate (meanNN-1), i.e. fn ≈ 
meanNN-1n [11]. 

Table 1 Heart rate variability measured in nine rats before (baseline) and 
after injection of methyl-scoplamine (vagal blockade) displayed as medians 
and inter-quartile ranges as well as p-values of the Wilcoxon test for paired 

comparisons of medians 

HRV measure baseline vagal blockade p 

meanNN 179 [178 – 198] 144 [131 – 155] 0.0039 
sdNN 7.6 [5.0 – 10.1] 4.3 [4.0 – 5.0] 0.098 
Rmssd 2.5 [2.1 – 2.9] 0.8 [0.8 – 1.0] 0.0039 
P 33.9 [15.8 – 45] 13.6 [8.6 – 21.7] 0.30 
VLF 7.2 [6.2 – 11.9] 1.7 [1.1 – 2.3] 0.0039 
LF 1.54 [0.74 – 2.33] 0.11 [0.10 – 0.18] 0.0039 
HF 1.63 [0.90 – 2.33] 0.22 [0.21 – 0.32] 0.0039 
Hc 0.41 [0.39 – 0.43] 0.31 [0.30 – 0.31] 0.0039 
SD1 1.8 [1.5 – 2.1] 0.6 [0.5 – 0.7] 0.0039 
SD2 10.6 [7.0 – 14.3] 6.1 [5.6 – 7.1] 0.098 
WPSUM13 0.11 [0.04 – 0.24] 0.06 [0.04 – 0.18] 0.57 
WPSUM20 0.73 [0.58 – 0.94] 0.92 [0.75 – 0.92] 0.30 
FORBWORD 42 [42 – 42] 42 [42 – 44] 1 
PLVAR2 0.15 [0.04 – 0.17] 0.94 [0.87 – 0.96] 0.0039 
PHVAR2 0.016 [0.003 – 0.024] 0.000 [0.000 – 0.000] 0.0039 
SampEn 1.00 [0.84 – 1.19] 0.42 [0.33 – 0.73] 0.074 
αLF 0.96 [0.85 – 1.04] 1.01 [0.98 – 1.18] 0.16 
αVLF 1.31 [1.22 – 1.34] 1.41 [1.38 – 1.44] 0.0039 

III. RESULTS  

After injection of methyl-scopolamine, a vagal blocker, 
the heart rate increases, i.e. meanNN reduces in all rats. 
Fig.1 shows an example of the NN interval time series be-
fore and after injection. For statistical comparison of HRV 
measures we compute group medians, inter-quartile ranges 
as well as the Wilcoxon test. Results are summarized in 
Tab.1. 

The overall HRV, as measured in the time domain via 
sdNN, is reduced in trend, but does not reach statistical 
significance. A more detailed analysis of HRV reveal dras-
tically reduced beat-to-beat variability (rmssd). The fre-
quency domain analysis shows that the high (HF), low fre-
quency (LF), and very low frequency (VLF) power is 
reduced, whereas the overall power is decreased in trend 
only. 

The Poincaré plot based analysis shows significantly re-
duced short-term fluctuations (SD1) and nearly significant 
reduction in SD2. 

The compression entropy is also significantly reduced af-
ter vagal blockade. 

Symbolic dynamics based analysis reveals an increase of 
low variability patterns (PLVAR2) paralleled by a decrease 
in high variability patterns (PHVAR2), whereas the other 
parameters are not significantly changed. 

The sampling entropy is reduced after vagal blockade, 
but does not reach statistical significance. 

Scaling analysis by means of DFA shows increased cor-
relations after vagal blockade in the VLF range. 

IV. DISCUSSION  

In this paper we study HRV, particularly its complexity 
measures, and changes in these measures caused by vagal 
blockade in conscious rats. It is well known that vagal 
blockade leads to an increase in heart rate paralleled by a 
decrease in variability in the high frequency range [12]. 
Little is known, however, about the effect of vagal blockade 
on the complexity of HRV or, in other words, about the 
sensitivity of complexity measures to vagal modulation of 
the heart rate. Our data shows the typical increase in heart 
rate paralleled by a decrease in HRV after vagal blockade. 
Besides the decrease in HF and rmssd we find LF oscilla-
tions to be almost vanished, suggesting that without external 
stress, LF fluctuations in heart rate are almost completely 
caused by vagal mechanisms. But also the VLF oscillations 
are significantly reduced during vagal blockade. 

This broad reduction in HRV also affects most of the 
complexity measures, showing a decreased complexity. The 
compression based measure Hc assesses fluctuations of 
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heart rate within a short time window and is therefore sensi-
tive to vagal modulations. Looking at the Poincaré plot, 
SD1 reflects beat-to-beat changes that are exclusively medi-
ated by the vagal pathway whereas, SD2 assesses also 
slower dynamics that might be caused by other regulatory 
systems, external stimuli or animal’s movements, and con-
sequently shows less sensitivity to vagal modulations. 

The contradictory behavior of the Symbolic Dynamics 
measures PLVAR2 and PHVAR2 that assess beat-to-beat 
dynamics over 7 consecutive heart beats also reflect the low 
HRV after vagal blockade. In particular there are no more 
heart rate patterns with consecutive beat-to-beat changes 
higher than 2 ms (PHVAR2). 

Sampling entropy is less sensitive to vagal blockade 
since this regularity statistic is based on the overall variabil-
ity of the NN time series that is also influenced by slow 
trends that are not caused by vagal modulations. 

The DFA shows a steeper slope in the VLF range and 
therefore increased long-range correlations after vagal 
blockage, which also suggest that vagal modulations cause a 
certain amount of irregularity in HRV and consequently a 
vagal blockade is leading to a more regular behavior at 
larger scales. 

Given that heart rate modulations mediated by vagal ef-
ferents mainly reflect cardio-respiratory coupling it could be 
speculated that the irregularity of respiration, including 
factors such as respiratory frequency, tidal volume, ratio 
between inspiration and respiration, etc. is the major source 
of the complexity found and assessed with the above de-
scribed measures. This emphasizes the necessity of re-
cording respiration in HRV analysis studies. 

V.CONCLUSIONS  

Vagal blockade of heart rate control in rats shows the 
typical increase in heart rate paralleled by a decrease in 
HRV. Several complexity measures are decreased and are 
therefore sensitive to vagal heart rate modulation.  
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