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Abstract— Brain computer interfaces (BCI) are used for 

communication and rehabilitation. One of the main categories 

of BCI techniques is motor imagery based BCI (MI-BCI). A 

large number of studies have focused on machine learning 

approaches to optimize MI-BCI performance. However, 

enhancement of MI-BCI through provision of optimized 

feedback modalities has not received equal attention. Motor 

imagery and motor execution activate almost the same area of 

the brain. During motor skills performance, a combination of 

proprioceptive and direct visual feedback (PDVF) is provided. 

Thus, we hypothesized that MI-BCI that receives PDVF 

outperforms the traditional MI-BCI, which only uses indirect 

visual feedback (IVF). We studied 8 healthy subjects 

performing MI through (i) IVF and (ii) PDVF. We used 8 

channel electroencephalogram (EEG) signals and extracted 

features using an autoregressive model and classified MIs using 

linear regression. On average, PDVF increased the accuracy of 

MI performance by 11%, and improved information transfer 

rate (ITR) by more than two times. In conclusion, using PDVF 

appears to improve MI-BCI performance according to the 

studied metrics, making this approach potentially more 

reliable. 

Keywords—EEG; motor learning; brain-computer interfaces; 

motor imagery; information transfer rate, accuracy 

I. INTRODUCTION 

     Brain-computer interface (BCI) technology has 
established the foundation for the human brain to 
communicate with machines directly. Motor imagery (MI) 
based BCI (MI-BCI) that relies on the rhythm changes occur 
within the sensorimotor area of the brain during MI [1], is 
one of the main BCI paradigms. In non-invasive MI-BCI, the 
brain activity during MI is recorded using EEG [2], 
functional magnetic resonance imaging [3] (fMRI), or near 
infrared spectroscopy (NIRS) [4]. Among the aforementioned 
techniques, EEG is the most practical and affordable 
technique and thus, the most commonly exploited modality in 
non-invasive MI-BCI applications.  

     One of the challenges of MI-BCI is its rather low accuracy 
and information transfer rate (ITR). This drawback limits the 
dissemination of MI-BCIs for widespread application. 
Provision of optimum feedback is believed to improve MI-
BCI performance metrics [5]. Proprioceptive feedback, visual 
feedback, or different combinations thereof are among the 
most common feedback modalities in MI-BCIs [6]. While 
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visual feedback is mostly supplied via cursor position update 
on a monitor [7], proprioceptive feedback has been provided 
using either orthoses [8] or robots [9]. Nijboer et al. [10], 
investigated suitability of auditory feedback for MI-BCI, and 
found its performance comparable with indirect visual 
feedback (IVF). Ramos-Murguialday et al. [11], applied 
concurrent proprioceptive and direct visual feedback (PDVF) 
as a feedback modality in MI-BCI restorative applications. 
PDVF showed increased accuracy of subject response to MI 
compared to either no feedback or sham feedback. However, 
they did not compare PDVF with other feedback modalities.  

Motor execution and motor imagery of a particular task, 
activate almost the same area of the brain [12]. Thus, in 
search for optimization of feedback modality for MI-BCI we 
surveyed different feedback types in motor learning.  Enough 
repetition of a movement, followed by feedback, results in 
motor learning in healthy subjects. Intrinsic feedback is 
realized through proprioceptive and/or visual sensory inputs 
as a result of the performed motor task. Extrinsic 
(augmented) feedback, however, is provided artificially by an 
external agent to enhance the motor learning outcomes; an 
example of this are athletes who learn new moves via 
auditory feedback from the coach [13]. When augmented 
feedback is added to intrinsic feedback, it improves the 
retention and motor learning outcomes by provision of 
knowledge of performance and/or knowledge of result [14]. 

In contrast to motor learning, there is no muscle 
activation during motor imagery and, therefore, no source of 
feedback. As a consequence, an external actuator is required 
to supply extrinsic feedback in MI-BCI setups. Provision of 
IVF through updating the cursor position on a monitor is 
currently the most ubiquitous feedback modality in BCI 
applications [11]. This type of feedback provision might be 
quite effective for some BCI applications, such as in the 
P300-based Speller [15]. However, considering the outcomes 
of motor learning studies on feedback modalities [16], IVF 
may not be as effective in MI-BCI because it lacks intrinsic 
(direct) feedback to close the sensorimotor loop. By contrast, 
PDVF, in addition to the augmented feedback of IVF, 
provides intrinsic visual and proprioceptive feedback.  

While, PDVF provides feedback that is closest to motor 
learning, supplying IVF via updating cursor position on a 
monitor remains the most prevalent feedback modality in MI-
BCI setups. Recently,  Lotte et al [17], suggested that current 
BCI training approaches that use IVF were suboptimal and 
need to be improved. Thus, to investigate alternative 
feedback modalities for MI-BCIs we compared two similar 
BCI designs that used either IVF or PDVF in eight BCI-naive 
subjects. According to our results, PDVF seems to be 
superior to the traditional IVF that promotes the application 
of PDVF to make MI-BCIs more efficient and accurate. 
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II. METHODS 

A. Subjects 

The study was approved by the human ethics committee 
of the University of Adelaide and conformed to principles 
outlined in the Declaration of Helsinki. All subjects provided 
their written informed consent to take part in the study and all 
recorded data were de-identified. Ten subjects (6 males) were 
aged 24–40 years. All subjects were asked to attend an 
induction session prior to the BCI sessions.  During the 
induction session, they were trained to remain alert, 
actionless, and concentrate during the experiments. Also, 
visual and kinesthetic MI were explained to them and then 
they practiced these techniques. 

Only 8 out of 10 subjects (4 females, 4 males) whose 
right vs. left hand MI performance were distinctive, passed 
the screening test and were allowed to participate in  the 
study (training sessions). 

B. BCI Setup 

A 72 Channel Refa TMSi EXG amplifier, containing 64 
unipolar and 8 bipolar channels and a 64 channel Waveguard 
EEG cap, were used for data acquisition. Only 8 out of 64 
channels (F3, F4, T7, C3, Cz, C4, T8, Pz) were used to 
record EEG data. To follow the recommendation of the 
manufacturer, The AFz channel was used as the ground 
channel. Due to the very high input impedance (in the order 
of tera-ohms) of the instrumentation amplifier [18], the 
impedance between the scalp and recording electrodes were 
kept below 50 kΩ. As the amplifier uses a built-in common 
average referencing procedure, there is no need to use an 
external reference channel to be attached to nose or ears. Any 
electrode with impedance more than 256 kΩ is considered as 
disconnected by the amplifier firmware and is excluded from 
common average reference calculation. The sampling 
frequency was 1024 Hz and every sample block contained 24 
samples. The EEG signals were passed through a 50 Hz 
notch filter to remove the power line noise. To remove DC 
offset and non related high frequency elements, a band pass 
filter with corner frequencies set to 0.1 and 40 Hz was also 
applied. 

After amplification and filtering by the amplifier, EEG 
signals were transferred through a 10-metre-long fiber optic 
cable to a FUSBi fiber to USB converter. Then they were 
conveyed to a PC using a USB cable. The PC contained an 
Intel Core-2 Duo 3.166 GHz processor, 3 GB of RAM, and 
used the Windows XP service pack 3 operating system. It 
was also mobilized with a 23” LCD monitor with a display 
update rate of 60 Hz to provide the IVF feedback. 

BCI2000 [19] was adopted as the software platform of the 
study because of its real time characteristic. We customized 
the source code of the software to supply auditory 
commands. We also altered the application module of the 
software to progressively update servomotors position 
throughout the feedback section of each trial.  

To provide PDVF, we fabricated a platform with two 
orthoses (one for each hand) to passively flex four fingers 
incrementally, according to the attributes of the MI of the 
target hand. Each orthosis included a servomotor (Blue Bird 
BMS-630) and a mechanical structure made of PVC. 

BCI2000 supplied the control commands for servomotors 
operation that were transformed via a Micro Maestro servo 
controller module to a format readable by the servomotors.  

C. Study design 

Each participant took part in one screening session 
followed by an online training session. The goal of the 
screening sessions was to identify the extent to which 
subjects could produce distinctive EEG signals out of 
right/left hand MI. Next, the most discriminative features of 
each subject’s EEG signals were extracted and used to 
calibrate their following training sessions. Finally, the 
extracted features of EEG signals produced during online 
sessions were classified in real time to generate control 
signals that were used to provide either PDVF or IVF. 

1. Screening session setup 

During the screening session, each participant went 
through 3 runs of MI of right/left hand. In each run subjects 
were instructed to perform ten right and ten left hand MI in a 
randomized order. At the onset of each trial, an auditory 
command of “left” or “right” was supplied concurrently with 
an equivalent visual stimulus. To present the visual cue, a 
monitor was placed 1 metre away from the subject at which 
an arrow pointing to either the left or right was shown. The 
sound levels of the auditory commands were kept constant 
throughout the study. Subjects were instructed to perform MI 
of their target hands involving four finger flexion within the 
3-second-long period in which the arrow was shown. The 
subjects were cued to stop the MI and concentrate on their 
breathing (relaxation) when the arrow disappeared. After 3 
seconds of relaxation, they were given new stimuli to 
perform MI for the next trial.  

To appreciate the specificity of MI attributes of each 
subject, the combination (left vs. relax or right vs. relax) that 
resulted in the highest value of the coefficient of 
determination (r

2
) was selected for each individual, where r

2
 

represents the proportion of the single-trial variance that is 
due to the task. While for the majority of subjects right vs. 
left hand MI generated the highest discrimination in 
sensorimotor rhythms; only right vs. rest and left vs. rest 
were considered in this study to minimize the cognition load 
and fatigue level. 

2. Subjects’ optimum features 

According to the findings of Pfurtscheller et al. [1]  MI of 
hand movement results in a decrement followed by an 
increment in the spectral power of sensorimotor rhythms. The 
former is known as event related desynchronization (ERD) 
whereas the latter is called event related synchronization 
(ERS). According to the results of same study, for the 
majority of cases these phenomena takes place in the 
contralateral rolandic area within the µ (8–13 Hz) and β (18–
25 Hz) frequency bands. However, in some occasions ERD 
and ERS may occur bilaterally. To extract the relevant 
features of MI as early as possible during the online sessions, 
only ERDs were considered. Among the eight subjects that 
proceeded to the online session, six subjects generated only 
contralateral ERDs, whereas the other two exhibited 
simultaneous ERDs in both, C3 and C4 channels. 
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3. Feedback provision 

Every 24 ms either the position of the cursor on the 
monitor (IVF feedback) or the angle of the orthosis (PDVF 
feedback) was updated according to the classifier outputs. 
Feedback modality of the first run was randomly selected and 
then was alternated for the following runs. To ensure 
availability of a sufficient amount of data for comparison, the 
minimum number of runs set to be four. If subjects were not 
exhausted, the number of runs could rise up to eight.  

4. Online training session 

All participants took part in an online training session no 
later than 2 weeks after their screening sessions. The online 
session included 4–8 runs of MI of right/left hand four-finger 
flexion. Each run comprised 15 randomly presented trials 
with 8/7 left/right hand MIs and 7/8 relaxations. Trials started 
with auditory commands of “left /right” or “relax” that cued 
participants to start MI or relaxation according to the 
command. Then, feedback provision section started after two 
seconds of trial onset and became updated every 24 ms for 
2.5 seconds. Finally, a “beep” signal, cued the end of trial. 
The following trial was initiated after a four-second-long 
break.  

D. Signal Processing 

1. Power spectrum estimation 

EEG signals become blurred because of the heterogeneity     
in the tissues of the cortex and the scalp. To deblur the EEG 
signals a large Laplacian spatial filter  as  an effective method 
for reduction of data blurring [20] was applied. To define an 
autoregressive (AR) model of the EEG data, the maximum 
entropy method [21] (MEM) was adopted. It was chosen over 
fast Fourier transform (FFT) due to its capability of robust 
power spectrum estimation of short time series [21]. The 
spectral power of the most recent 500 ms was progressively 
estimated every 24 ms at the predefined frequencies and 
electrode positions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Classification  

A linear regression algorithm was used to classify the 
extracted feature of the EEG data every 24 ms (the duration 
of each sample block) due to its simple procedure and fast 
processing time. The classification results showed whether 
the subject’s performance during the most recent 500 ms 
conforms to the requested task (either left/right hand MI or 
relaxation). Finally, the classification result was transferred to 
the application module to provide either IVF or PDVF.  

E. Measures & Statistics 

1. Performance measures 

To compare the effects of different feedback modalities 
on BCI performance two measures were used. First, the 
conventional measure of the percentage of the trials that 
ended with hit in each run as an index of accuracy was 
applied. As a second metric, information transfer rate (ITR) 
that simultaneously considers accuracy and speed of data 
transfer [22] was used. To calculate ITR in bits per minute 
(bits/min) the following formula was applied [22]: 

ITR = (log2 𝑁 +  𝑃 log2 𝑃 + (1 − 𝑃) log2
1−𝑃

𝑁−1
) 60/8.5   (1) 

Where, N is the number of classes (which is two in this 
study), and P is the accuracy of each run, and 8.5 is the 
duration of each trial in seconds.  

2. Statistical analysis 

Since the resultant values of the aforementioned metrics 
did not have a normal distribution, the two-sided unpaired 
Wilcoxon rank-sum test [23] was used. Due to application of 
two comparison measures, Bonferroni correction [24] for 
multiple comparisons was applied and therefore, the 
significance level set to  0.05/2 = 0.025. 
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Figure 1: Comparing the accuracy and ITR between two equal MI-BCI setups where either PDVF or IVF feedback provided. The edges of the boxes are 
the 25th and 75th percentiles, the horizontal line in each box is the median, and the whiskers extend to the minima and maxima. 
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III. RESULTS AND DISCUSSION 

Task performance was quantified using accuracy (hit rate 
percentage) and ITR. Fig. 1−A compares hit rate percentage 
distribution between PDVF and IVF. It shows that PDVF 
with average accuracy of 83% outperforms that of IVF by 
11% (p = 0.0015).  Fig. 1−B shows the comparison between 
the ITR distribution out of PDVF and IVF setups. This figure 
depict that using PDVF results in the average ITR of 2.81 
bits/min which is greater than two times of the average ITR  
of IVF (1.32 bits/min) (p = 0.001). 

The main finding of our study is that the adoption of 
PDVF in MI-BCI systems significantly improves the 
accuracy and ITR of the BCI setup. While PDVF only 
improves the average accuracy by almost 10%, it resulted in 
enhancing the ITR by more than two times due to the 
logarithmic relationship of ITR and accuracy. In other words, 
application of PDVF enables subjects to communicate more 
than two times faster than IVF. 

Our results are also in accordance with the findings of 
Gomez-Rodriguez et al (2011), who showed that supplying 
proprioceptive feedback in parallel with IVF enhances the 
accuracy of MI performance compared to that with only IVF 
[25]. However, they only studied the effect of adding 
proprioceptive feedback to the IVF. Thus, prior to our study, 
it remained unclear whether and to what extent PDVF (the 
natural feedback for motor learning) outperforms IVF (the 
most used feedback with MI-BCIs). 

According to the Kahneman’s attention theory [16] 
attention resources of the human brain are limited. In other 
words, it is difficult for human agents to focus on a number 
of different tasks concurrently. Thus, it makes it cumbersome 
to fully concentrate on both MI task and realizing IVF, 
simultaneously. In contrast, when PDVF is received during 
MI performance, the intrinsic visual and proprioceptive 
sensory feedback mechanisms are perceived quite similar to 
feedback perception in motor learning. Therefore, it may be 
concluded that receiving PDVF improves performance and 
does not distract subjects during MI. 

Since we did not record electromyogram (EMG) of the 
hand muscles in this study, we cannot exclude the possibility 
that active movement has affected our results. 

IV. CONCLUSION 

In the current study, the feature extraction and 
classification procedure used for both PDVF and IVF 
feedback were entirely equivalent. Thus, the improvement of 
the adopted metrics is expected to be due to more 
discriminant features elicited from PDVF. Specifically, 
receiving PDVF enables subjects to produce MIs that are 
easier to differentiate from relaxation compared to those with 
IVF. These high quality MIs in turn, lead to improved control 
over the BCI task and results in higher accuracy and faster 
communication.  Thus, provision of PDVF feedback in MI-
BCI may be used to render MI-BCI communication faster 
and more accurate. 
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