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Abstract—We present new computational building blocks
based on memristive devices. These blocks, can be used to
implement either supervised or unsupervised learning modules.
This is achieved using a crosspoint architecture which is an
efficient array implementation for nanoscale two-terminal mem-
ristive devices. Based on these blocks and an experimentally
verified SPICE macromodel for the memristor, we demonstrate
that firstly, the Spike-Timing-Dependent Plasticity (STDP) can
be implemented by a single memristor device and secondly, a
memristor-based competitive Hebbian learning through STDP
using a 1×1000 synaptic network. This is achieved by adjusting
the memristor’s conductance values (weights) as a function
of the timing difference between presynaptic and postsynaptic
spikes. These implementations have a number of shortcomings
due to the memristor’s characteristics such as memory decay,
highly nonlinear switching behaviour as a function of applied
voltage/current, and functional uniformity. These shortcomings
can be addressed by utilising a mixed gates that can be used
in conjunction with the analogue behaviour for biomimetic
computation. The digital implementations in this paper use in-
situ computational capability of the memristor.

I. INTRODUCTION

The classical von Neumann machine suffers from a large
sequential (fetch-execute-store cycle) processing overload due
to the existence of the data bus between memory and logic.
Neuromorphic engineering introduces a more efficient (event
driven) implementation but not necessarily low-power. Soft-
ware techniques are power hungry and there traditionally has
been was no low-power hardware device (switch) to provide
tighter coupling between memory and logic, as in biologi-
cal systems. The memristor is an emerging technology that
combines (non-volatile) memory and in-situ computational
characteristics in one device in the way that promises an
entirely new computer architecture.

The mathematical foundation of the memristor, as the fourth
fundamental passive element, has been expounded by Leon
Chua [1] and later extended to a broader class, known as
memristive devices and systems [2]. This broad classification
today includes all resistance switching memory devices [3].
Realisation of a solid-state memristor in 2008 [4] has gen-
erated a new wave of research in realization of both large
memory arrays as well as new thinking in the neuromorphic
engineering domain. Memristors (the term memristor is a
portmanteau of memory and resistor) are capable of encoding
information in two or more stable levels each with relatively

long decay times. The decay can be long in human terms (e.g.
days and weeks), which is a practical implementation of a non-
volatile memory [2], [4]–[7]. It has also been experimentally
proven -in small scale- that these two-terminal memristive
devices are able to carry out logic operations [8]. Therefore,
memristor is a possible option for implementing a tighter
coupling between memory and logic technologies.

There are many memristor-based applications. The obvious
application of such a nanometer scale device is in implement-
ing non-volatile, low-power, and dense memory arrays. Owing
to the multi-stable state property and the relatively long term
decay, memristors are also able to encode synaptic weights [9].
Furthermore, several possibilities for neuromorphic engineer-
ing domain and learning have been also studied [6], [10]–[12].
In this paper we demonstrate very basic analogue and digital
circuits that are implemented in memristor technology.

Contributions that this paper provides can be categorised as
follow:

• Brief characterisation of memristor for neuromorphic
purposes.

• Experimental results demonstrating the multi-stable
state of a silver/titanium dioxide/indium tin oxide
(Ag/TiO2/ITO).

• Demonstration of the use of memristor as a synaptic
connection that mimics the Spike-Timing Dependent
Plasticity (STDP) rule.

• Show a memristor-based competitive Hebbian learning
through STDP.

• Circuit for analogue multiplication and accumulation
using fixed weights pattern.

• Experimental show that a sharp switching behaviour in
a fabricated Ag/TiO2/ITO and Pt/TiO2/Pt (Pt: Platinum)
memristors as well as state decay. Demonstrating a
memristive-based analogue computing.

• CRS-based logic gates through material implication and
PLA implementations.

Note that memristor and memristive device characteristics,
modelling, materials, and underlying physics are not within
the scope of this paper. The interested reader can find further
details in [1], [5], [10], [13], [14] for further details. The
simulations carried out in this work using SPICE macro-model
implementation of presented model in [13].
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II. MEMRISTOR MODEL

Memristor device characteristics can be defined using a
system of two equations,{

I = g(w, V ) · V
dw
dt = f(w, V ) ,

(1)

where w is a physical variable indicating the internal mem-
ristor state that in theory is such that 0 < w < L, L is
the thickness of a thin-film metal-oxide (memristive) material
sandwiched between two metallic electrodes, and I and V
represent current and voltage, respectively. The g(·) function
represents the memristor’s conductance. The state variable can
be expressed using a normalised form x = 1 − w/L. In this
case, w → 0 or moving towards higher conductances can be
expressed as x → 1 and w → L or moving towards lower
conductances can be shown as x → 0. In this paper, RHRS

represents high resistance state and RLRS shows low resistance
state. Eq. (1) shows that the output of the system (here I), at a
given time, depends on w and V . State transition conditions are
also explained by the function f(·). To measure this function
several time-domain experiments for I and V are required.
According to our measurements, a sinh(·) like behaviour can
explain dynamics of the device while an additional term is
needed. The sinh(·) term defines the dependency of velocity,
dw/dt, to the effective applied electric field that has been
described as an ionic crystal behaviour in an external electric
field [15]. The additional term highlights the dependency of
conductance, Gt, to the previous conductance, Gt−1. Intu-
itively, we use an exponential form function h(w) to define
dw/dt as a function of w based on Fig. 3 in [16]. The
h(w) function then should be multiplied by the sinh(·). The
conductance behaviour as a function of w is also shown in
Fig 2 of [14]. Due to the asymmetric behaviour of w → 0 and
w → L [16], we have used two different h(w) definition to
address a more accurate switching properties [14], [16].

The state variable equation then can be defined as

dw

dt
= h(w)

∑
i

υiV
i + d(w), (2)

where υi are coefficients for low and high electric fields. The
index, i, is an positive odd integer so it is the expansion
of sinh(·). This demonstration help to easily extract linear
approximation of the memristor model in [4] and also combine
effects of Joule heating and L − w (the effective electric
field) in the coefficients [13]. The function d(w) represents the
decay term which can be weeks, months, or more. The decay
term appears to be very similar to synaptic weight update
(learning) rule [6], [11]. The first term of Eq. (2), represents a
voltage dependent, highly nonlinear which makes high-speed
digital computing possible. This property originated from the
fact that resistance modulation inside the metal-oxide occurs
via electron-ion interactions. This term creates a significant
problem for learning applications in the current form.

To compensate this problem we have to take advantage
of its high nonlinearity. This nonlinear behaviour produces a

threshold-like region that voltages below that threshold does
not change the conductance. Considering the fact that, memris-
tor’s conductance, G, can be tuned by a series of voltage pulses
with appropriate pulse widths and a voltage around the thresh-
old, obviously, pulse time is the other parameter involved.
Applying a voltage around the threshold slightly changes x
(or w) if it is maintained for a few µs. It is observed that
such voltage cannot change the state if the duration is around
a few ns. However, slightly increase in the applied voltage
increases the speed by several orders of magnitude, which
makes nanosecond (digital) switching possible. Therefore, a
series of few µs pulses with an appropriate pulse shape can
be used to mimic learning rule [12].

III. ANALOGUE MEMORY AND COMPUTING

A. Muti-stable state memory

Here we demonstrate such behaviour in Ag/TiO2/ITO ex-
periment, which is an identification for existence of an ionic
drift. Fig. 1 illustrates the existence of the multi-stable memory
levels. The experiments carried out using a Keithley 4200-
SCS. Triangular input voltage was swept from 0 V to −0.9 V
and vice versa. Current compliance of 500 µA was applied
to avoid any damage to the device. At the end of each cycle
device was disconnected from inputs.

The most critical limitation of analogue memristor is its
state decay. Although many stable state can be observed,
our measurements for five conductance levels showed decay
distribution ranging from a few hours up to a few days. More
measurements were not possible with our limited time.
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Fig. 1. Memristor analogue behaviour. Experimental result from
Ag/TiO2/ITO memristor. Current values are normalised to their maximum
value (35 µA). Inset shows a Device Under Test (DUT). The red and the
green areas highlight a memristor device.

B. Memristive, plasticity, and learning

The connection can be drawn between memristive devices
and biological synaptic update rule, known as STDP, that
has been observed in the brain [9]. This can be achieved by
collecting data from a memristive device based on the time
difference, ∆t, between two signals, so called pre- and post-
synaptic signals. The results are shown in Fig. 2 (a), which
shows how the Device Under Test (DUT) weight (resistance)
changes as a function of ∆t. The intermediate states vanish
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after a certain decay duration whereas a significantly higher
potentiation (x→ 1) will be kept as a long term memory. So,
the existence of intermediate states decay helps in mimicking
the long-term potentiation and short-term plasticity (LTP and
LTP) behaviour [17].

The collected information is then used as stimuli for a
network of 1× 1000 memristors are connected to one neuron
being implemented and pre- and post-synaptic spikes shape is
the same as [12], then this network implements the competitive
Hebbian learning [18]. Initial states have been shown in
Fig. 2 (c) in red. Intentionally, a Gaussian distribution has
been employed for the memristors’ initial state values. After
running the simulation for 35 minutes, the network results
in a population distribution of weights similar to a previ-
ously published competitive Hebbian learning rules [18]. The
additive and multiplicative features of a memristive network
strictly depends on the device and its nonlinearity parameters.
Fig. 2 (b) demonstrates a Poissonian ISI distribution.

C. Programmable analogue circuits

Although plasticity plays an important role for adaptation
and development, networks with fixed synaptic weight pattern
should be also studied. Therefore, one of the challenges for this
emerging technology is to integrate learning and unlearning
hardware as part of a neural computational platform. Since
memristors possess a threshold-like behaviour, usually low-
or very low-voltage operations do not change the memristor’s
initial state. This fact helps developing programmable ana-
logue computing circuits [19]. There is also a similar design
in [20]. The is no simulation or experimental result.

Here, we introduce the use of a memristive array for
implementing a multiplication of inputs and the memristor’s
internal state, w, which represents the memristor’s conduc-
tance. Fig. 3 (a) illustrates a single row of the array and
Fig. 3 (b) shows its simulation results for two elements, M1
and M2, connected to two inputs, In1 and In2. In this case,
we first applied a voltage pulse to M1 to read its conductance,
then a pulse to M2 for the same reason. When two voltage
pulses are simultaneously applied to M1 and M2, accumulation
operation can be clearly observed.

D. Existence of a threshold-like switching

In this part, we show the existence of a switching threshold
in a TiO2-based memristor. According to Chua’s definition [1],
memristor links electrical charge to flux, ϕ, and ϕ =

∫
V dt.

Therefore, the amount of flux passing through the device
can be controlled by V and/or time. So, low pulse widths
should not change the conductance if the voltage is lower than
a certain value and small voltages similarly do not change
the conductance if the applied pulse width is not sufficient.
The analysis started from the amorphous (RESET) state and
a crystallisation window created above 0.8 V and 100 µs.
Fig. 4 illustrates the results from a Pt/TiO2/Pt memristor. It
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Fig. 3. Multiply-accumulate module. (a) Shows a single row of multiply
elements (memristors), Ini · wi. (b) Demonstrates simulation results for two
memristors, M1 and M2. In this simulation, memristor M2 programmed at
x = 0.5, which is equivalent to (RHRS + RLRS)/2. Then memristor M1
changes its resistance from RLRS to RHRS in three steps. Each step is a
simulation that is shown with different colours. Blue for RM1 = RLRS,
green for RM1 close to (RHRS + RLRS)/2, and red for RM1 close to
RHRS. The summing amplifier can be replaced by any thresholding module
for different applications.
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Fig. 4. Existance of a switching threshold in the memristor material. The
pulse widths are from 10 µs to 1 s.

is observed that the area of crystallisation window decreases
as RHRS increases in different devices [14].

IV. DIGITAL IN-SITU COMPUTING

The existence of the sharp switching threshold, functional
uniformity, intermediate state initialisation, and most impor-
tantly state decay creates several problems that can be elimi-
nated or compensated for by using the memristor device as a
binary switch.

A. Complementary Resistive Switch (CRS)

Although the memristor has introduced new possibilities and
it is very well adapted in a crossbar architecture, the inherent
interfering current paths between neighbouring cells of an
addressed cell impose limitations on the array scalability [13],
[21]. A possible solution is to build a diode or a transistor in
series with a memristor. Using transistors adds other scalability
issues due to the fact that transistors are not very well
stackable and the application of diodes imposes a high drive
current limiting the use of such array in an ultra-low-power
applications.
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Fig. 2. Memristor, plasticity, and competitive learning. (a) Dots illustrate experimental data and the solid (red) line shows the fitting STDP rule. We exclude
devices that reach lowest and highest conductances in depression and potentiation processes, respectively, because they add no extra information to our analysis.
(b) A Poisson inter-spike interval (ISI) distribution for 1× 1000 memristors (synapse) connected to one neuron, inset in (c). (c) Illustrates simulation results
of such network. It is clear that it follow the competitive learning behaviour reported in [18]. (d) Evolution of synaptic strength from 0 s to 2000 s.

Linn et al. [21] introduced a new paradigm by exploiting
two anti-serially (with opposite polarities) connected memris-
tors. The structure is similar to a memistor (note the missing
“r”) [22]–[24]. A (digital) CRS uses a combination of a High
Resistance State (HRS) and a Low Resistance State (LRS)
to encode logic “0” and logic “1”. Consequently, the overall
resistance of such device is always around HRS, resulting
in significant reduction in the parasitic current paths through
neighbouring devices. Fig. 5 (a) summaries the CRS states. If
p and q indicate resistances of the memristors M1 and M2, re-
spectively, four different states can be observed. For example,
p/q ←L/H indicates that LRS is written in p (memristor M1)
and HRS in q (memristor M2). Combinations L/H and H/L
for p and q represent logic “1” and logic “0”, respectively.
Note that the H/H state only occurs once in a “fresh” device.
According to Fig. 5 (c) any transition between the states occurs
if the applied voltage exceed the SET thresholds, Vth,S1 or
Vth,S2 and the device’s initial state supports the transition.
Possible state transitions are shown in Table I, where p′/q′

shows the next state, p/q illustrates the initial state, and output
is a current pulse or spike. These outputs enable us to have two
different read-out mechanisms, logic→ON or logic→logic.

The transitions in Table I can be defined using material
implication logic [8], [25]. It has been proven that impli-
cation and FALSE operation are a complete set for logical
operations [26]. This logical operation results in change of q
depending on the state of p (or vise versa), known as p IMP
q, ‘p implies q’ or ‘if p then q’. Therefore, if we represent p
NIMP q it means ‘p not implies q’, Table I (i), for example,
represents q ←H and we say the conditions (initial p/q and
∆V ) not implies q.

The destructive read-out should not be a problem for two
reasons: (1) refreshing a digital memory is a normal task
depends on the decay term and (2) there are no alternative
available to combine the CRS properties and a non-destructive
read-out.
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Fig. 5. CRS device structure and logical definition of each combination. (a)
demonstrates all operational states, (b) illustrates the crossbar view, and (c)
shows CRS functionality.

TABLE I
STATE TRANSITIONS IN A CRS

p/q ∆V = VIA − VIB p′/q′ Output
i) “1” Vth,S1 < ∆V < Vth,R1 ON pulse

ii) “1” Vth,R1 < ∆V “0” spike
iii) “0” Vth,R2 < ∆V < Vth,S2 ON pulse
iv) “0” ∆V < Vth,R2 “1” spike
v) ON Vth,R1 < ∆V “0” –

vi) ON ∆V < Vth,R2 “1” –

B. CRS-based logical operations

Here, we introduce CRS-based logical operation and PLA
(programmable logic array) that works with the two transi-
tions, logic→logic and logic→ON, but we only present it
with the later transition. The idea is to charge a bit-line in
a crossbar array, and applying inputs to its word lines. The
inherent implication property of the device causes a change
under certain conditions that we have already discussed.
In [25], AND and NOR operations are proposed using the
logic→logic transition and current spike read-out process. This
method is very dependent on the current spike which occurs
by a transient ON state between two logic states. In their
implementation, two combinations have been evaluated out
of two possible combinations for two CRS devices. Assume
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voltage, ∆V , is applied across a CRS device that is exceeded
its RESET threshold, in this situation this device changes its
stored logic, D, if D is a certain logic depends on the signature
of ∆V . Furthermore, if two CRS devices are connected
together, that intermediate point can be connected to either
ground or power supply to generate NOR/AND gate. That is
the reason that no more possible state can be assumed using
such approach.
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Fig. 6. CRS-based logic gate structures. (a) D represents stored data, X
is an input, and Rpu is pull-up resistor. The output is initially charged and
it is discharged depends on D and In. (b) Shows how a not implication,
NIMP, can be implemented. Here q′ ← D NIMP X . (c) Two inputs NAND
gate is implemented by storing one input as device state and another one as
an actual input. Here complementary of signal X is applied to the device.
(d) Similar to NAND but complementary of D stored in the CRS and X is
applied as an input. Therefore, an OR operation implemented, simply by a
single CRS device. Obviously, operations are sequential and they requires one
(or several) initialisation but this is a drawback for all of the available Boolean
logic operations reported in [8], [25]. Pull-up (charge) voltage is enough to
push a device to its ON state and not writing a logic, Vth,S < Vpu < Vth,R.
NOT function can be also implemented using a single CRS if D stores (the
data) A and X = 0, F = A. (e) and (d) are PLA implementation of the
two logic gates. Here we remove the outputs’ complementary signals, AND
and NOR. The yellow highlights show the OR-plane and the rest are in the
AND-plane.

Here two comprehensive forms of building logical gates are
introduced. The first form, allows storing one or more inputs as
device state and the second method does not. Fig. 6 illustrates
how CRS works as an implementation of a not implication,
NIMP, operation and how NAND and OR operations can be
implemented using a single CRS device. Fig. 6 (a)-(d) are well
explained in the figure’s caption and their operations is also
described. Fig. 6 (e) and (f) follow similar phenomenon but in
a form of a PLA. The idea is to have a logic→ON transition in
the OR-plane whenever an output product term is addressed.
From the NIMP operation, we know that if the applied inputs
are part of the output product terms, that bit-line does not
discharged so there will be enough voltage across the output
CRS device with stored logic “1” (greens) to turn to ON and
conduct significantly more current to charge the output signal
load.

In the case of using differential voltage pairs, Vpu =
−Vpd = 1.4 V was selected as 2.8 V is the READ voltage
(in Fig. 5), where Vpu and Vpd are pull-up and pull-down

voltages. Here we applied Vpu = 2.8 V and Vpd = 0 V, so
we used 0.25 µm CMOS transistors in our CMOS domain.
Therefore, equivalent input voltage for logics “1” is 2.8 V
and for logics “0” is 0 V. The pull-up and pull-down resistors,
Rpu and Rpd, are both equal to RLRS

√
2(r + 1), where

r = RHRS/RLRS [13]. The used peripheral CMOS circuitries
can be found in [27]. The sense amplifier was designed for
voltage sensitivity more than 100 mV.

TABLE II
CRS-BASED LOGIC IMPLEMENTATION WITH TWO INOUTS AND TWO

CRSS, F = D1 ·D2 +D1 ·X2 +D2 ·X1 +X1 ·X2 .

D1 D2 X1 X2 Function
A A 0 B A ·B (AND)
A A 0 B A + B (NOR)
A A B B A⊕B (XOR)
A A B B A�B (XNOR)

Assuming we have two inputs, X1 and X2, and two CRS
devices, D1 and D2, connected to these inputs and a charged
bit-line. A number of functions can be implemented by writing
F = D1 · X1 + D2 · X2, hence, F = D1 · D2 + D1 · X2 +
D2 · X1 + X1 · X2. The first term, D1D2, indicates that if
both CRSs store “0” TRUE (F = 1) is implemented. Some
other function that is implemented using this configuration
are shown in Table II. In [28] we demonstrates a CRS-
based content addressable memory based on the XOR/XNOR
function. Fig. 7 (a) illustrates simulation of a two input NAND
function. The most significant advantage of this method is that
the initialisation step (step 1) which is writing data into CRS
arrays and not a simple refreshing cycle. While in a PLA
structure, Fig. 7 (b), the initialisation is a refreshing cycle.
Furthermore, in computer arithmetic operations signals arrive
with relative delays, like SUM results and CARRY output, that
can be used in parallel with the programming of CRS arrays.

V. CONCLUSION

This paper introduced basic functional blocks for analogue
and digital computation based on memristive devices. It is
difficult to have a fair comparison between emerging and
the conventional devices as the emerging technologies are at
their early stages. Moreover, architectural aspects for future
computers seems to be dependent to the concept of universal
memory and computational capability of one individual device
or nano-system that is entirely different with the classical von
Neumann computational framework. Therefore, introducing
more compatible circuits and algorithms with these futuristic
technologies could play an important role. This work presented
the existence of ionic drift in the fabricated memristors.
We have also illustrated how the memristor can be used
to implement competitive Hebbian learning (additive STDP).
An analogue multiply-accumulation circuit was introduced
that is able to implement a low precision multiplication and
addition. This circuit combines inherent non-volatile memory

141



0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

X=0
D=0
p=H (0)
q=L  (1)

X=0
D=1
p=L  (1)
q=H (0)

St
ep

1:
 w

rit
in

g 
D

, D
=0

St
ep

1:
 w

rit
in

g 
D

, D
=1

St
ep

1:
 w

rit
in

g 
D

, D
=0

St
ep

1:
 w

rit
in

g 
D

, D
=1

X=1
D=0
p=H (0)
q=L  (1)

St
ep

2:
 a

pp
ly

in
g 

X,
 X

=0

St
ep

2:
 a

pp
ly

in
g 

X,
 X

=0

St
ep

2:
 a

pp
ly

in
g 

X,
 X

=1

St
ep

2:
 a

pp
ly

in
g 

X,
 X

=1

X=1
D=1
p=L  (1)
q=H (0)

Time (ms)

Vo
lta

ge
 (V

)

0 0.4 0.8 1.2 1.6 2
−0.1

0

0.2

0.4

0.6

Time (ms)

Vo
lta

ge
 (V

)

St
ep

1:
 In

iti
al

is
in

g

St
ep

1:
 In

iti
al

is
in

g

St
ep

1:
 In

iti
al

is
in

g

St
ep

1:
 In

iti
al

is
in

g

St
ep

1:
 In

iti
al

is
in

g

St
ep

1:
 In

iti
al

is
in

g

St
ep

1:
 In

iti
al

is
in

g

St
ep

1:
 In

iti
al

is
in

g

St
ep

2:
 a

pp
ly

in
g 
X

St
ep

2:
 a

pp
ly

in
g 
X

St
ep

2:
 a

pp
ly

in
g 
X

St
ep

2:
 a

pp
ly

in
g 
X

St
ep

2:
 a

pp
ly

in
g 
X

St
ep

2:
 a

pp
ly

in
g 
X

St
ep

2:
 a

pp
ly

in
g 
X

St
ep

2:
 a

pp
ly

in
g 
X

X1=0
X2=0
X3=0

X1=1
X2=0
X3=0

X1=0
X2=1
X3=0

X1=1
X2=1
X3=0

X1=0
X2=0
X3=1

X1=1
X2=0
X3=1

X1=0
X2=1
X3=1

X1=1
X2=1
X3=1

D=ON
p=L  (1)
q=L  (1)

(a)

(b)

Fig. 7. CRS-based logic gate simulations. (a) A 2-input NAND gate
(Fig. 6 (c)) simulation. In this style, we are allowed to store one input as
the CRS state. (b) A 3-input XOR (SUM) function, implemented in a PLA
structure. In both cases, (a) and (b), dashed red line show worst-case low and
high output voltages that are sent to sense amplifiers. Due to limited space,
complementary output, XNOR, is not shown. Initialisation in (b) means, the
array should be initialised before the next logical operation and this is the main
reason that the first approach (in (a)) is a far more efficient implementation
in terms of both hardware and number of steps. No initialisation is required
in (a), because ’writing D’ effectively means writing one of the input’s logic
into the device.

and dynamics of a memristor as a synapse. The problem of
state decay then results in developing a digital version of
such learning system which is out of the scope for this paper.
However, the idea of digital computing using a more robust
memristive device, CRS, was explained and two methods for
implementing logical blocks were introduced.
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