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We investigate an array of stochastic quantizers for converting an analog input signal into a discrete 
output in the context of suprathreshold stochastic resonance. A new optimal weighted decoding is 
considered for different threshold level distributions. We show that for particular noise levels and choices 
of the threshold levels optimally weighting the quantizer responses provides a reduced mean square 
error in comparison with the original unweighted array. However, there are also many parameter regions 
where the original array provides near optimal performance, and when this occurs, it offers a much 
simpler approach than optimally weighting each quantizer’s response.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The term stochastic resonance (SR) [1–5] is used to describe 
phenomena where improvement of transmission or processing of 
a signal in a nonlinear system is achieved by tuning the noise 
intensity. Since its origins thirty years ago in the field of geo-
physical dynamics [1], SR has received considerable attention in 
a growing variety of systems with various types of signals and 
performance measures [6–21]. Most SR studies carried out today 
occur in threshold-based or potential barrier systems where a sig-
nal is by itself too weak to overcome a threshold or a potential 
barrier [6–21], but the presence of noise allows the signal to cross 
the threshold eliciting a more effective system response. Therefore, 
subthreshold input signals in threshold-based systems were origi-
nally assumed to be a necessary condition for the occurrence of SR.

Interestingly, a form of SR was reported by Stocks [22–24], un-
der the name of suprathreshold SR (SSR), since it operates with 
signals of arbitrary magnitude, not restricted to weak or sub-
threshold signals. Notably, SSR is an important extension of SR 
with potential applications in a range of areas including neural 
systems. For example, SSR has been considered in ensembles of 
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sensory neurons [25], signal quantizers [41], cochlear implant de-
vices [26] and nonlinear detectors [28]. Moreover, artificial sen-
sors, digital beamforming, biological neurons, cochlear implants 
and multiaccess communication systems can all be unified under 
the concept of stochastic pooling networks that manifest the noise-
enhanced processing property [32–34]. Due to the variety of sce-
narios where SSR is observed, a number of performance measures 
have been considered, for instance, mutual information [22,23,
27,29–31], mean square error (MSE) distortion [35,41,43], input–
output cross-correlation [35,38], Fisher information [36,39,43] and 
signal-to-noise ratio [37].

The model studied in [22] that exhibits SSR is effectively a 
stochastic quantizer, since it converts an analog input signal into 
a digital output signal with threshold values randomized by noise 
[40–43]. McDonnell et al. have analyzed SSR in terms of lossy 
source coding and quantization theory, and examined the optimal-
ity of the quantization by using MSE distortion [40–43]. It was 
shown that the case of all identical threshold values is optimal 
for sufficiently large input noise, and a bifurcation pattern appears 
in the optimal threshold distribution with decreasing noise inten-
sity, whether maximizing the mutual information or minimizing 
the MSE distortion [40–43].

In this paper, we investigate the decoding scheme of a quan-
tized signal in the generic SSR model [22]. We propose a new 
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Fig. 1. Weighted summing array of N noisy comparators. It consists of N identical 
comparators (i.e. single bit quantizers), each operating on a common signal x sub-
ject to independent additive noise ηi . The output of each individual comparator, yi , 
is multiplied by the weighted coefficient wi , resulting in the weighted output wi yi . 
The overall output, ŷ, is the sum of the N weighted outputs, i.e. ŷ = ∑N

i=1 wi yi .

decoding scheme, which we refer to as optimal weighted decod-
ing. For different threshold value settings, the MSE distortion curve 
exhibits the SSR effect as a function of noise level and increased 
numbers of comparators. We compare the optimal weighted de-
coding scheme obtained by weighting before summation to that 
of weighting after summation, by analyzing the MSE distortions of 
each. The results show that optimal weighting of the binary quan-
tizers’ outputs before summation is superior to the case assumed 
in the original array, where the unweighted binary responses are 
simply summed. We demonstrate that optimally weighting the re-
sponses reduces the MSE distortion between the original input 
signal and the decoded output signal. However, we also find that 
there are parameter regions where optimal weighting provides a 
negligible reduction in mean square error, and in these regions it 
is therefore beneficial to avoid the additional complexity required 
in finding the optimal weightings and applying them.

This paper is organized as follows: Section 2 gives mathematical 
descriptions of optimal weighted decoding for an array of com-
parators. Section 3 develops the MSE distortion performance of 
weighted decoding for three examples of threshold setting config-
uration. Section 4 compares the MSE distortions between the cases 
of weighting before and after summation. Finally, we present the 
conclusions and discuss further research directions.

2. Optimal weighted decoding scheme

We here consider the weighted summing array of N noisy com-
parators, as shown in Fig. 1. All comparators receive the same con-
tinuously valued input signal x with standard deviation σx . The ith 
comparator is subject to independent and identically distributed 
(i.i.d.) additive noise components ηi with standard deviation ση , 
which are independent of the signal x. The output from each com-
parator, yi , is unity if the input signal plus the noise is greater 
than its threshold θi , and zero otherwise. The noisy binary out-
put of each individual comparator yi is then multiplied by the 
weighted coefficient wi (wi ∈ �), resulting in the weighted output 
wi yi . All weighted outputs are summed to give the overall output 
ŷ = ∑N

i=1 wi yi .
When all weighted coefficients wi (i = 1, . . . , N) are equal to 

unity, the model is identical to that studied in [22]. It is effectively 
a stochastic quantizer [40–43]. The summation of the outputs of 
all the comparators is a discretely valued stochastic encoding of x, 
which can take integer values between zero and N . For obtain-
ing reconstructed signal, we need a decoding method to decode 
the output signal. This is performed by weighting after summa-
tion. When the weighted coefficient wi (i = 1, . . . , N) is arbitrarily 
chosen, the model achieves a decoding function that is performed 
by weighting before summation.
2.1. Wiener linear decoding

Before considering how to optimally weight the quantizer re-
sponses, we first review what is known as Wiener linear decoding, 
as studied in [43]. In this case, we introduce y to denote the un-
weighted sum of the quantizer response, i.e.

y =
N∑

i=1

yi . (1)

It is shown in [43] that, under the condition where all thresh-
old levels are identical and equal to the signal mean, and both 
the signal and noise have even probability density functions, that 
E[y] = N/2. Under these conditions, it is of interest to consider 
how to optimize the MSE between the input signal, x, and a linear 
decoding of y written in the form

ŷw = 2c

N
y − c. (2)

The result of this operation, ŷw can be thought of as the recon-
structed value of the input signal, with the error between the 
input x, and the reconstructed output ŷw being

ε = x − ŷw. (3)

It is straightforward to derive the optimal solution for c as

c = NE[xy]
2 var[y] , (4)

where var[y] = E[y2] − N2/4 is the variance of y [43]. This is 
known as the Wiener optimal linear decoding scheme for minimiz-
ing MSE distortion [44]. The MSE distortion for Wiener decoding 
can be written as [43]

MSEw = E[x2]
(

1 − E[xy]2

E[x2]var[y]
)

= E[x2](1 − ρ2
xy), (5)

where ρxy is the correlation coefficient between the input signal x
and the output y. Equation (5) also shows that the MSE distortion 
of Wiener decoding scheme is entirely dependant on the correla-
tion coefficient ρxy .

2.2. Optimal weighted decoding

We now consider the case shown in Fig. 1, where arbitrary 
multiplicative weightings wi (i = 1, . . . , N) are applied to the bi-
nary quantizer outputs. We seek to choose the optimal weights, 
wo = [wo

1, w
o
2, · · · , wo

N ]� under which the MSE distortion between 
the decoded signal and the input is the minimum. We denote this 
decoding scheme as optimal weighted decoding, and find the optimal 
weights by applying least squares regression to a data obtained by 
simulating a sequence of samples from the input signal, and the 
resulting binary quantizer responses from each sample.

To begin, we introduce a vector x of size (K × 1) to denote 
a sequence of K independent samples drawn from the input sig-
nal’s probability distribution. We also introduce a matrix Y of size 
(K × N) to denote the N threshold responses for each of the 
K input samples. We denote an arbitrary vector of weights as 
w = [w1, w2, · · · , w N ]� and the optimal weights as wo. Ideally, we 
desire wo to satisfy

Ywo = x. (6)

However, for K > N (in practice we desire K � N), this is an over-
complete system of linear equations, and we therefore follow the 
standard approach of seeking to find wo that minimizes the MSE 
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distortion for the data, i.e., the solution to the optimization prob-
lem

wo = arg min
w

K∑
k=1

(ykw − xk)
2, (7)

where yk is the k-th row of Y. The minimum of the sum of squares 
in Eq. (7) is found by setting the gradient to zero, and we have

Y�x = Y�Ywo. (8)

When the inverse matrix (Y�Y)−1 exists, an exact solution to 
Eq. (7) can be written as

wo = (Y�Y)−1Y�x. (9)

In practice, if the inverse matrix does not exist, we can regularize
Eq. (9) by solving [45]

wo = (Y�Y + λI)−1Y�x, (10)

where λ is a parameter that can be optimized using cross-
validation, and I is the N × N identity matrix.

Having obtained the optimal weights, the resulting optimally 
weighted decoding ŷ for any input sample x can be expressed as

ŷ =
N∑

i=1

wo
i (yi − ȳi), (11)

where ȳi is the mean value of each comparator output. Note that 
this can be expressed as

ŷ = bo +
N∑

i=1

wo
i yi = bo + ywo, (12)

where bo is an optimal constant bias and y is the vector of all 
binary quantizer responses.

3. Results for optimal weighted decoding

In this section, we explore three examples of threshold set-
tings to examine the MSE distortion performance of the optimal 
weighted decoding scheme, as the ratio of noise standard devia-
tion ση to signal standard deviation σx varies. As in [22,43], we 
denote this ratio as σ = ση/σx . Since both σx and threshold-levels 
applied to x have the same units, it should be noted that our no-
tation for threshold levels (e.g. θ ) are actually the dimensionless 
ratio θ/σx . Consequently, the MSE distortion values that we calcu-
late below have units of σ 2

x .
In this paper, except in one instance explicitly indicated, we as-

sume that both the signal and the noise are Gaussian with zero 
mean.

3.1. Identical thresholds

Since we assume zero mean Gaussian signal and noise, it can be 
shown that when all comparators have the same threshold value 
θi = θ = 0, the mean ȳi = 0.5 [43]. Therefore, given a set of opti-
mal weights, wo

i , they can be assigned arbitrarily to any yi . This is 
equivalent to giving all yi the same weight, provided it is equal to 
the average of the weights returned by the optimization. Thus we 
can rewrite the decoding equation of Eq. (12) to the form

ŷ = a(y − b), (13)

where y = ∑N
i=1 yi , a = (

∑N
i=1 wo

i )/N , and b = ∑N
i=1 ȳi . For zero-

mean noise PDFs that are even functions, and for all threshold 
values equal to zero, b = E[y] = N/2 [43].
Fig. 2. The MSE distortion of weighting before summation versus σ for the case of 
identical threshold values, i.e. θ = E[x] = 0. From top to bottom, the array sizes are 
N = 1, 3, 7, 15, 31, 63 and 127.

We can write the mean square error as

MSE = E[(x − ŷ)2] = E[ ŷ2] − 2E[xŷ] + E[x2]. (14)

Substituting Eq. (13) into Eq. (14), the MSE distortion can be 
written as

MSE = a2E[y2] − 2aE[xy] + E[x2] − a2N2

4
. (15)

When differentiating Eq. (15) with respect to a, and setting the 
result to zero, an optimal expression for a is

a = E[xy]
var[y] . (16)

Since b = N/2, from Eq. (16), it is seen that Eq. (13) is actually 
the same as Eq. (2) when this expression for a is used. This result 
indicates that the optimal weighted decoding achieves the same 
performance as the Wiener linear decoding for the case of identical 
thresholds. This is also verified by the MSE distortion of Eq. (15), 
as shown in Fig. 2.

For all threshold values θ = E[x] = 0, Fig. 2 shows the MSE dis-
tortion of weighting before summation versus σ . As the number 
of comparators, N , increases, the MSE distortion can be optimized 
by tuning σ . The results are consistent with previous results ob-
tained by Wiener linear decoding in [43]. The MSE distortions of 
other signal and noise distributions (not shown here) also accord 
with the corresponding results in [43].

Besides the identical threshold setting, it is also of interest to 
examine the MSE distortion of weighting before summation when 
each comparator has different threshold settings. In the following, 
we will consider two schemes of the threshold settings.

3.2. Unique thresholds

Here we consider a situation that occurs in a conventional uni-
form scalar quantizer, namely that the threshold levels are set 
uniquely at intervals of 1/(N + 1) across the signal dynamic range. 
Hence, assuming a signal with a support of size σx , the thresh-
old value of each comparator is given by θi = σx(i − 1)/(N + 1) for 
i = 1, 2, · · · , N .

It is known that in the absence of noise, the best performance 
can be produced for the uniform quantization scheme when the 
input signal is also a uniform distribution [22]. Hence, uniform sig-
nal and noise distributions are used here to analyze the property 
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Fig. 3. The MSE distortion of weighting before summation versus the ratio of σ for 
uniform signal and noise distributions (from top to bottom, N = 1, 3, 7, 15, 31, 63, 
and 127). The red dashed lines show the MSE distortion for the unique threshold 
setting, and the blue solid lines correspond to the MSE distortion of the identical 
threshold setting. The optimal weights for each comparator are solved using Eq. (10)
with K = 106 data samples. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

of weighting before summation. The MSE distortion with unique 
thresholds is shown in Fig. 3 versus σ for different N (dashed red 
lines). Here, the optimal weights for each comparator are found 
by solving Eq. (10), for K = 106 data samples. For comparison, the 
solid blue lines correspond to the MSE distortion curves where all 
thresholds are set to the signal mean, as shown in Fig. 3. It is ob-
served that, for the same size N , the case of all thresholds being 
identical, with respect to the case of unique thresholds, achieves a 
much smaller MSE distortion at the corresponding optimal nonzero 
value of σ . Moreover, the configuration of quantizers with the 
same threshold value has lower complexity than the scheme of 
setting N different threshold values.

3.3. Group thresholds

The third configuration of threshold setting we shall consider is 
dividing the set of threshold levels into two groups. In each group 
with size Nm (m = 1, 2), all comparators have the same thresh-
old value θm , while the two groups have different threshold values 
θ1 �= θ2. Thus, the decoding output for this case of group threshold 
setting can be written as

ŷ =
N1∑

i=1

wo
i,1(yi,1 − ȳi) +

N2∑
j=1

wo
j,2(y j,2 − ȳ j). (17)

Within each summation on the right side of Eq. (17), the threshold 
values are equal, and therefore so are the means. Since there is no 
way to distinguish between each yi , the weights can be assigned 
to any yi . The reconstructed signal ŷ is given by

ŷ = a1(y1 − b1) + a2(y2 − b2), (18)

where the outputs of the encoder in each group are

y1 =
N1∑

i=1

yi,1, y2 =
N2∑
j=1

y j,1. (19)

Here, the constants a1 and a2 can be expressed as
Fig. 4. The MSE distortion of weighting before summation versus σ , where from 
top to bottom N = 2, 4, 8, 16, 32, 64, 128. For comparison, (A) the red dashed lines 
are for the case of group thresholds, and the blue solid lines are for the case of 
identical thresholds; (B) The black solid lines are for the case of unique thresholds, 
and the red dashed lines are still for the case of group thresholds. For the group 
threshold setting, the quantizer size of each group is equal, that is N1 = N2 = N/2, 
while the threshold values are set as θ1/σx = −1 and θ2/σx = 1, respectively. The 
optimal weights for each comparator are found by solving Eq. (10). Data samples 
K = 5 × 105. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

a1 = (

N1∑
i=1

wo
i )/N1, a2 = (

N2∑
j=1

wo
j )/N2, (20)

while the constant parameters b1 and b2 are computed as

b1 =
N1∑

i=1

ȳi, b2 =
N2∑
j=1

ȳ j . (21)

The MSE distortions are plotted versus σ for different array 
sizes (dashed red lines) in Fig. 4(A). Here, the optimal weights for 
each comparator are found by solving Eq. (10) with K = 5 × 105

data samples. Two groups are with the same size N1 = N2 = N/2, 
but different threshold values of θ1/σx = −1 and θ2/σx = 1. For 
comparison, the solid lines represent the MSE distortions for the 
case of the identical threshold value setting. It is obvious that, for 
large N , the optimal MSE distortion for the case of group thresh-
old levels is much lower than that of identical threshold levels. 
A careful observation shows that, for the case of group thresholds, 
the position of the minimum MSE distortion shifts to lower noise 
intensities, rather than higher noise intensities as seen for identi-
cal thresholds. More interestingly, for the group threshold setting, 
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Fig. 5. The MSE distortion of weighting before summation against increasing σ
when the threshold values are identical, unique and grouped. Here, the number 
of quantizers is N = 128.

the MSE shows the monotonic increasing behavior for N = 2. For 
N > 2 quantizers, the MSE distortion can be reduced by optimally 
tuning σ . Similarly, we also compare the case of group thresholds 
with the case of unique thresholds (black solid lines) in Fig. 4(B). 
It is shown that, for large N , the MSE distortion for the case of 
unique thresholds is much larger than that of group thresholds. 
Other signal and noise distributions also demonstrate similar re-
sults (not shown here for simplicity).

3.4. Comparison of performance for different threshold setting 
strategies

We now directly compare the MSE distortion for the optimal 
weighted decoding method across each of the three cases of iden-
tical, unique and group threshold settings. Fig. 5 shows the MSE 
distortion for the above three cases for N = 128. It is seen in Fig. 5
that the group threshold case gives the smallest MSE distortion, 
and possesses the best performance for almost the whole range 
of σ . A further observation is that the minimum MSE for the group 
threshold values occurs at an optimal level of σ < 1, while the 
identical and unique threshold cases have slightly higher minima 
at a much larger σ (σ > 1).

At σ = 0, the MSE of the identical thresholds is the largest 
among the three cases, while the MSE of the unique thresholds 
is the smallest. The reason is that, for the identical thresholds, 
all thresholds switch in unison, only a binary output signal with 
state 0 or 1 can be obtained, and only a binary representation of 
the input signal is available, resulting in a large MSE distortion. In 
comparison, for the case of N unique thresholds (which is a spe-
cial case of the group threshold setting), the output is an N + 1
state representation of the input signal, which enables a smaller 
MSE distortion.

These comparisons motivated us to seek a method for decreas-
ing the MSE distortion using the group threshold setting. As σ
increases, it is seen in Fig. 5 that the MSE of the two group thresh-
old setting is much better than other threshold settings. It is also, 
however, shown in Fig. 5 that, for very large noise levels, the MSE 
distortions for all threshold settings tend to be equal, and the 
group threshold values reduce to the signal mean, i.e. the iden-
tical thresholds case. These results are expected, because previous 
work has shown that group thresholds are optimal except for very 
small noise levels and for large noise; in the former case, unique 
thresholds are optimal, while in the latter case, identical thresh-
Fig. 6. The MSE distortion of weighting before summation compared to that of 
weighting after summation against increasing σ in the case of group thresh-
olds. Here, from top to bottom, the curves of MSE distortion are plotted for N =
2, 4, 8, 16, 32, 64, 128. The sizes of each group are N1 = N2 = N/2, and the thresh-
old values within each group are θ1/σx = +1 and θ2/σx = −1, respectively. The red 
solid lines show the MSE distortions of weighting before summation, and the blue 
circles lines correspond to that of weighting after summation. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

olds are optimal [42,43]—our results in this paper are consistent 
with this prior work. The task of determining the optimal number 
of group threshold levels, group sizes and threshold values is an 
interesting question for future work.

4. MSE distortion comparison between the case of weighting 
before and after summation

In Section 3, it is observed that the performance of weighted 
decoding in the case of a group threshold setting is better than 
other threshold setting schemes. Thus, it is interesting to com-
pare MSE distortions between optimal weighted decoding versus 
Wiener linear decoding; that is the MSE distortion comparison 
between the cases of weighting before and after summation. It 
is also known that the expected value of the encoding output is 
E[y] = N/2 for the case of identical thresholds, but this result will 
not necessarily hold for the case of group thresholds. Under such 
a condition, the reconstruction points using the Wiener decoding 
technique are different from Eq. (2), and take on the following 
form [43]

ŷ = E[xy]
var[y] (y − E[y]), for y = 0,1, · · · , N. (22)

Fig. 6 shows the comparison of performance between the cases 
of weighting before and after summation with group thresholds. 
We here choose sizes of each group N1 = N2 = N/2, and the 
threshold values for each group as θ1/σx = +1 and θ2/σx = −1, 
respectively. In Fig. 6, the red solid and blue circles lines repre-
sent the MSE distortions of weighting before and after summa-
tion, respectively. The results demonstrate that weighting before 
summation gives almost the same performance as weighting after 
summation. The reason is that if the threshold values θ1 and θ2
are mutually opposite real numbers, as illustrated in Fig. 6, a1 is 
then equal to a2 in Eq. (18).

In order to further identify the MSE distortion difference be-
tween weighting before and after summation in the case of group 
thresholds, we define the percentage P as
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Fig. 7. The MSE distortion percentage difference between weighting before and af-
ter summation against the ratio σ and the thresholds θ2/σx , for the given group 
thresholds θ1/σx = 1 and the total quantizer size N = 128. The array sizes of each 
group are N1 = N2 = N/2, respectively.

P = MSEafter − MSEbefore

MSEbefore
, (23)

where MSEafter, MSEbefore are the distortion values for weighting 
after and before summation, respectively. In this way, for the given 
group threshold level θ1/σx = 1 and array size N = 128, the differ-
ence percentage P between the two decoding schemes, for various 
θ2/σx and σ , is shown in Fig. 7.

In Fig. 7, it is seen that, for the symmetrical setting of θ1/σx = 1
and θ2/σx = −1, the percentage difference is extremely small, but 
always positive. This means that weighting after summation is al-
ways slightly worse than weighting before summation. However, it 
is also clear that in this case, summing and carrying out Wiener 
linear decoding is nearly as good as optimal weighted decoding, 
because the distortion is only negligibly reduced. Consequently, 
under these conditions the additional complexity required to ob-
tain optimal weights and use them in an array is unlikely to be 
warranted, and the summing without first weighting used in the 
original array can be considered to be a superior array configura-
tion.

However, it is also seen that, as the group threshold value 
θ2/σx increases, the difference percentage P presents a maximum 
peak at θ2/σx = 0.35 and σ = 0.7. For the group threshold lev-
els of θ1/σx = 1 and θ2/σx = 0.35, the MSE distortion curves of 
two decoding schemes are illustrated in Fig. 8(A). It illustrates that 
weighting before summation gives rise to a smaller MSE. Moreover, 
as N increases, the difference between the MSE distortions for 
the two decoding schemes becomes larger. The percentage differ-
ences P between two decoding methods are also clearly exhibited 
in Fig. 8(B) for group sizes N1 = N2 = N/2. It demonstrates that 
weighting before summation is better than the case of weighting 
after summation. Therefore, the conclusion that summing before 
carrying out Wiener decoding does not significantly lower perfor-
mance is very much dependent on the choice of thresholds.

5. Conclusion and discussions

In this paper, we study the problem of optimizing the decoding 
output signal through a summing array of binary quantizers. A new 
optimal weighted decoding scheme is proposed, and the MSE dis-
tortions of this decoding scheme for three examples of threshold 
settings, i.e., identical, unique and group thresholds, are analyzed 
in detail. The obtained results show that the MSE distortion is the 
lowest for the case of group thresholds. In this situation, the MSE 
distortion of optimal weighted decoding, i.e. performed by weight-
ing before summation, is improved over that of weighting after 
Fig. 8. (A) The MSE distortion of weighting before summation compared to that 
of weighting after summation against increasing σ for the case of group thresh-
olds, from top to bottom N = 2, 4, 8, 16, 128. The red solid lines show the results 
of weighting before summation, and the blue dashed lines show the results of 
weighting after summation. (B) The MSE distortion percentage difference between 
weighting before and after summation against increasing σ for the case of group 
thresholds, from bottom to top N = 2, 4, 8, 16, 32, 64, 128. The array sizes of each 
group are N1 = N2 = N/2, respectively. The threshold values within each group are 
θ1/σx = 1 and θ2/σx = 0.35, respectively. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

summation. In addition, decoding performance of weighting after 
summation is nearly as good as that of weighting before sum-
mation in certain threshold groups. This is a significant finding 
for many potential applications inspired by SSR, because summing 
without first weighting is much simpler than weighting and then 
summing, and its MSE distortion performance is not reduced.

We note that, from the viewpoint of quantization theory, the 
MSE distortion describes the average error between the input sig-
nal and the reconstructed output. The initial SSR research mainly 
considers the viewpoint of information transmission, and thus the 
mutual information is frequently used to analyze the channel ca-
pacity of SSR model. It will be very interesting to find the inherent 
relationship between the two measures in the same situation; for 
example, whether the optimal noise levels that correspond to the 
minimum MSE or the maximum mutual information are the same 
or not.

From the point of view of signal estimation theory, the mini-
mum MSE distortion will be no less than a theoretical limit given 
by the average information bound [46], which is related to the 
bias and the Fisher information of an estimator (i.e. the output 
of the SSR model). Naturally, it is of future interest to develop 
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a mathematical description for the minimum MSE distortion that 
the optimal weighted decoding approach can achieve. This is an 
unconstrained multidimensional optimization problem, since the 
group sizes, the threshold value settings and the noise level will 
be all unconstrained variables of the MSE distortion. How much 
lower can the minimum MSE distortion of weighting before sum-
mation be than that of weighting after summation and to what 
extent does it approach the theoretical average information bound?

Previously, mathematical expressions for the large N Wiener 
linear decoding MSE distortion, and exact results for specific sig-
nal and noise distributions have been derived [43]. For the optimal 
weighted decoding, with N1,2 going to infinity, the MSE expression 
is more complicated than that of the optimal Wiener decoding. 
Thus, there remains an open question that is of interest for our 
future work, which is whether MSE distortion has asymptotic be-
havior or not.
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