Physics Letters A 379 (2015) 2277-2283

www.elsevier.com/locate/pla

Contents lists available at ScienceDirect

Physics Letters A

PHYSICS LETTERS A

Decoding suprathreshold stochastic resonance with optimal weights

@ CrossMark

Liyan Xu®*, Tony Vladusich b Fabing Duan?, Lachlan J. Gunn ¢, Derek Abbott ¢,

Mark D. McDonnell P

2 Institute of Complexity Science, Qingdao University, Qingdao 266071, PR China

b Computational and Theoretical Neuroscience Laboratory, Institute for Telecommunications Research, School of Information Technology and Mathematical

Sciences, University of South Australia, SA 5095, Australia

¢ Centre for Biomedical Engineering (CBME) and School of Electrical & Electronic Engineering, The University of Adelaide, Adelaide, SA 5005, Australia

ARTICLE INFO ABSTRACT

Article history:

Received 28 December 2014

Received in revised form 14 May 2015
Accepted 14 May 2015

Available online 19 May 2015
Communicated by C.R. Doering

We investigate an array of stochastic quantizers for converting an analog input signal into a discrete
output in the context of suprathreshold stochastic resonance. A new optimal weighted decoding is
considered for different threshold level distributions. We show that for particular noise levels and choices
of the threshold levels optimally weighting the quantizer responses provides a reduced mean square
error in comparison with the original unweighted array. However, there are also many parameter regions
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simpler approach than optimally weighting each quantizer’s response.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The term stochastic resonance (SR) [1-5] is used to describe
phenomena where improvement of transmission or processing of
a signal in a nonlinear system is achieved by tuning the noise
intensity. Since its origins thirty years ago in the field of geo-
physical dynamics [1], SR has received considerable attention in
a growing variety of systems with various types of signals and
performance measures [6-21]. Most SR studies carried out today
occur in threshold-based or potential barrier systems where a sig-
nal is by itself too weak to overcome a threshold or a potential
barrier [6-21], but the presence of noise allows the signal to cross
the threshold eliciting a more effective system response. Therefore,
subthreshold input signals in threshold-based systems were origi-
nally assumed to be a necessary condition for the occurrence of SR.

Interestingly, a form of SR was reported by Stocks [22-24], un-
der the name of suprathreshold SR (SSR), since it operates with
signals of arbitrary magnitude, not restricted to weak or sub-
threshold signals. Notably, SSR is an important extension of SR
with potential applications in a range of areas including neural
systems. For example, SSR has been considered in ensembles of
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sensory neurons [25], signal quantizers [41], cochlear implant de-
vices [26] and nonlinear detectors [28]. Moreover, artificial sen-
sors, digital beamforming, biological neurons, cochlear implants
and multiaccess communication systems can all be unified under
the concept of stochastic pooling networks that manifest the noise-
enhanced processing property [32-34]. Due to the variety of sce-
narios where SSR is observed, a number of performance measures
have been considered, for instance, mutual information [22,23,
27,29-31], mean square error (MSE) distortion [35,41,43], input-
output cross-correlation [35,38], Fisher information [36,39,43| and
signal-to-noise ratio [37].

The model studied in [22] that exhibits SSR is effectively a
stochastic quantizer, since it converts an analog input signal into
a digital output signal with threshold values randomized by noise
[40-43]. McDonnell et al. have analyzed SSR in terms of lossy
source coding and quantization theory, and examined the optimal-
ity of the quantization by using MSE distortion [40-43]. It was
shown that the case of all identical threshold values is optimal
for sufficiently large input noise, and a bifurcation pattern appears
in the optimal threshold distribution with decreasing noise inten-
sity, whether maximizing the mutual information or minimizing
the MSE distortion [40-43].

In this paper, we investigate the decoding scheme of a quan-
tized signal in the generic SSR model [22]. We propose a new
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Fig. 1. Weighted summing array of N noisy comparators. It consists of N identical
comparators (i.e. single bit quantizers), each operating on a common signal x sub-
ject to independent additive noise n;. The output of each individual comparator, y;,
is multiplied by the weighted coefficient w;, resulting in the weighted output w;y;.
The overall output, ¥, is the sum of the N weighted outputs, i.e. y = ZIN:] w;yi.

decoding scheme, which we refer to as optimal weighted decod-
ing. For different threshold value settings, the MSE distortion curve
exhibits the SSR effect as a function of noise level and increased
numbers of comparators. We compare the optimal weighted de-
coding scheme obtained by weighting before summation to that
of weighting after summation, by analyzing the MSE distortions of
each. The results show that optimal weighting of the binary quan-
tizers’ outputs before summation is superior to the case assumed
in the original array, where the unweighted binary responses are
simply summed. We demonstrate that optimally weighting the re-
sponses reduces the MSE distortion between the original input
signal and the decoded output signal. However, we also find that
there are parameter regions where optimal weighting provides a
negligible reduction in mean square error, and in these regions it
is therefore beneficial to avoid the additional complexity required
in finding the optimal weightings and applying them.

This paper is organized as follows: Section 2 gives mathematical
descriptions of optimal weighted decoding for an array of com-
parators. Section 3 develops the MSE distortion performance of
weighted decoding for three examples of threshold setting config-
uration. Section 4 compares the MSE distortions between the cases
of weighting before and after summation. Finally, we present the
conclusions and discuss further research directions.

2. Optimal weighted decoding scheme

We here consider the weighted summing array of N noisy com-
parators, as shown in Fig. 1. All comparators receive the same con-
tinuously valued input signal x with standard deviation oy. The ith
comparator is subject to independent and identically distributed
(i.i.d.) additive noise components 7; with standard deviation o,
which are independent of the signal x. The output from each com-
parator, y;, is unity if the input signal plus the noise is greater
than its threshold 6;, and zero otherwise. The noisy binary out-
put of each individual comparator y; is then multiplied by the
weighted coefficient w; (w; € i), resulting in the weighted output
w;y;. All weighted outputs are summed to give the overall output
y= ZIN=1 WiYi.

When all weighted coefficients w; (i=1,...,N) are equal to
unity, the model is identical to that studied in [22]. It is effectively
a stochastic quantizer [40-43]. The summation of the outputs of
all the comparators is a discretely valued stochastic encoding of x,
which can take integer values between zero and N. For obtain-
ing reconstructed signal, we need a decoding method to decode
the output signal. This is performed by weighting after summa-
tion. When the weighted coefficient w; (i=1,..., N) is arbitrarily
chosen, the model achieves a decoding function that is performed
by weighting before summation.

2.1. Wiener linear decoding

Before considering how to optimally weight the quantizer re-
sponses, we first review what is known as Wiener linear decoding,
as studied in [43]. In this case, we introduce y to denote the un-
weighted sum of the quantizer response, i.e.

N
y=Yy »i (1)
i=1

It is shown in [43] that, under the condition where all thresh-
old levels are identical and equal to the signal mean, and both
the signal and noise have even probability density functions, that
E[y] = N/2. Under these conditions, it is of interest to consider
how to optimize the MSE between the input signal, x, and a linear
decoding of y written in the form

Jw= Ny —C. (2)
The result of this operation, J, can be thought of as the recon-
structed value of the input signal, with the error between the
input x, and the reconstructed output y,, being

€=X—Yw. (3)
It is straightforward to derive the optimal solution for ¢ as
NE[x
c= ﬁ’ (4)
2varly]

where var[y] = E[y?] — N%2/4 is the variance of y [43]. This is
known as the Wiener optimal linear decoding scheme for minimiz-
ing MSE distortion [44]. The MSE distortion for Wiener decoding
can be written as [43]

E[xy]?

— F[x2 _
MSEy = E[x“] (1 Epc]varly]

)=E[x2](1 — Pay)» (5)
where pyy is the correlation coefficient between the input signal x
and the output y. Equation (5) also shows that the MSE distortion
of Wiener decoding scheme is entirely dependant on the correla-
tion coefficient pxy.

2.2. Optimal weighted decoding

We now consider the case shown in Fig. 1, where arbitrary
multiplicative weightings w; (i=1,..., N) are applied to the bi-
nary quantizer outputs. We seek to choose the optimal weights,
wo = [w?, wj,---, w%]T under which the MSE distortion between
the decoded signal and the input is the minimum. We denote this
decoding scheme as optimal weighted decoding, and find the optimal
weights by applying least squares regression to a data obtained by
simulating a sequence of samples from the input signal, and the
resulting binary quantizer responses from each sample.

To begin, we introduce a vector x of size (K x 1) to denote
a sequence of K independent samples drawn from the input sig-
nal’s probability distribution. We also introduce a matrix Y of size
(K x N) to denote the N threshold responses for each of the
K input samples. We denote an arbitrary vector of weights as
W= [wq,Ws,--,wy]T and the optimal weights as w®. Ideally, we
desire w° to satisfy

Yw® =x. (6)

However, for K > N (in practice we desire K >> N), this is an over-
complete system of linear equations, and we therefore follow the
standard approach of seeking to find w® that minimizes the MSE
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distortion for the data, i.e., the solution to the optimization prob-
lem

K

w° =argmin ) " (yiw — x)°, (7)
k=1

where yy is the k-th row of Y. The minimum of the sum of squares
in Eq. (7) is found by setting the gradient to zero, and we have

Y x=Y Yw®. (8)

When the inverse matrix (Y'Y)~! exists, an exact solution to
Eq. (7) can be written as

wl=('Y)YTx. (9)

In practice, if the inverse matrix does not exist, we can regularize
Eq. (9) by solving [45]

wo=(Y'Y+ADYTx, (10)

where A is a parameter that can be optimized using cross-
validation, and I is the N x N identity matrix.

Having obtained the optimal weights, the resulting optimally
weighted decoding y for any input sample x can be expressed as

N
f/ZZW?(Yi—?i), (11)
i=1

where y; is the mean value of each comparator output. Note that
this can be expressed as

N
J=b"+) wlyi=b°+yw’, (12)
i=1
where b° is an optimal constant bias and y is the vector of all
binary quantizer responses.

3. Results for optimal weighted decoding

In this section, we explore three examples of threshold set-
tings to examine the MSE distortion performance of the optimal
weighted decoding scheme, as the ratio of noise standard devia-
tion oy to signal standard deviation oy varies. As in [22,43], we
denote this ratio as o = 0y, /0%. Since both oy and threshold-levels
applied to x have the same units, it should be noted that our no-
tation for threshold levels (e.g. ) are actually the dimensionless
ratio 6/oy. Consequently, the MSE distortion values that we calcu-
late below have units of o2.

In this paper, except in one instance explicitly indicated, we as-
sume that both the signal and the noise are Gaussian with zero
mean.

3.1. Identical thresholds

Since we assume zero mean Gaussian signal and noise, it can be
shown that when all comparators have the same threshold value
0; =6 =0, the mean y; = 0.5 [43]. Therefore, given a set of opti-
mal weights, w?, they can be assigned arbitrarily to any y;. This is
equivalent to giving all y; the same weight, provided it is equal to
the average of the weights returned by the optimization. Thus we
can rewrite the decoding equation of Eq. (12) to the form

y=aly-b), (13)

where y =YV, yi, a= (TN, w?)/N, and b = >N . Ji. For zero-
mean noise PDFs that are even functions, and for all threshold
values equal to zero, b =E[y] = N/2 [43].
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Fig. 2. The MSE distortion of weighting before summation versus o for the case of
identical threshold values, i.e. & = E[x] = 0. From top to bottom, the array sizes are
N=1,3,7,15,31,63 and 127.

We can write the mean square error as

MSE = E[(x — $)*] = E[7*] — 2E[xJ] + E[*]. (14)

Substituting Eq. (13) into Eq. (14), the MSE distortion can be
written as

MSE = a®E[y?] — 2aE 2 —@
=a“E[y“] — 2aE[xy] + E[x"] 7 (15)

When differentiating Eq. (15) with respect to a, and setting the
result to zero, an optimal expression for a is

q— E[xy] .
var[y]

Since b = N/2, from Eq. (16), it is seen that Eq. (13) is actually
the same as Eq. (2) when this expression for a is used. This result
indicates that the optimal weighted decoding achieves the same
performance as the Wiener linear decoding for the case of identical
thresholds. This is also verified by the MSE distortion of Eq. (15),
as shown in Fig. 2.

For all threshold values 6 = E[x] =0, Fig. 2 shows the MSE dis-
tortion of weighting before summation versus o. As the number
of comparators, N, increases, the MSE distortion can be optimized
by tuning o. The results are consistent with previous results ob-
tained by Wiener linear decoding in [43]. The MSE distortions of
other signal and noise distributions (not shown here) also accord
with the corresponding results in [43].

Besides the identical threshold setting, it is also of interest to
examine the MSE distortion of weighting before summation when
each comparator has different threshold settings. In the following,
we will consider two schemes of the threshold settings.

(16)

3.2. Unique thresholds

Here we consider a situation that occurs in a conventional uni-
form scalar quantizer, namely that the threshold levels are set
uniquely at intervals of 1/(N + 1) across the signal dynamic range.
Hence, assuming a signal with a support of size oy, the thresh-
old value of each comparator is given by 6; = ox(i—1)/(N + 1) for
i=1,2,---,N.

It is known that in the absence of noise, the best performance
can be produced for the uniform quantization scheme when the
input signal is also a uniform distribution [22]. Hence, uniform sig-
nal and noise distributions are used here to analyze the property
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Fig. 3. The MSE distortion of weighting before summation versus the ratio of o for
uniform signal and noise distributions (from top to bottom, N =1, 3,7, 15,31, 63,
and 127). The red dashed lines show the MSE distortion for the unique threshold
setting, and the blue solid lines correspond to the MSE distortion of the identical
threshold setting. The optimal weights for each comparator are solved using Eq. (10)
with K = 10% data samples. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

of weighting before summation. The MSE distortion with unique
thresholds is shown in Fig. 3 versus o for different N (dashed red
lines). Here, the optimal weights for each comparator are found
by solving Eq. (10), for K = 10° data samples. For comparison, the
solid blue lines correspond to the MSE distortion curves where all
thresholds are set to the signal mean, as shown in Fig. 3. It is ob-
served that, for the same size N, the case of all thresholds being
identical, with respect to the case of unique thresholds, achieves a
much smaller MSE distortion at the corresponding optimal nonzero
value of o. Moreover, the configuration of quantizers with the
same threshold value has lower complexity than the scheme of
setting N different threshold values.

3.3. Group thresholds

The third configuration of threshold setting we shall consider is
dividing the set of threshold levels into two groups. In each group
with size N, (m =1,2), all comparators have the same thresh-
old value 6, while the two groups have different threshold values
61 # 6. Thus, the decoding output for this case of group threshold
setting can be written as

Nq N3
J=Y Wi — I+ Y w2 — ). (17)
i=1 j=1

Within each summation on the right side of Eq. (17), the threshold
values are equal, and therefore so are the means. Since there is no
way to distinguish between each y;, the weights can be assigned
to any y;. The reconstructed signal y is given by

y=a1(y1 —b1) + ax(y2 — ba), (18)

where the outputs of the encoder in each group are

Ny N,
Yi=)_¥i1.  Ya=Y_ ¥ja1 (19)
i=1 j=1

Here, the constants a; and a can be expressed as

X

MSE in unit of 6°

X

MSE in unit of 62

Fig. 4. The MSE distortion of weighting before summation versus o, where from
top to bottom N =2, 4,8, 16, 32, 64, 128. For comparison, (A) the red dashed lines
are for the case of group thresholds, and the blue solid lines are for the case of
identical thresholds; (B) The black solid lines are for the case of unique thresholds,
and the red dashed lines are still for the case of group thresholds. For the group
threshold setting, the quantizer size of each group is equal, that is Ny = N, =N/2,
while the threshold values are set as 6;/0x = —1 and 6, /0x = 1, respectively. The
optimal weights for each comparator are found by solving Eq. (10). Data samples
K =5 x 10°. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Nq Ny
=0 w)/Ni,  aa=(_wH/N, (20)
i=1 j=1

while the constant parameters by and b, are computed as

Ny N,
bi=> 3. ba=)» (21)
i=1 j=1

The MSE distortions are plotted versus o for different array
sizes (dashed red lines) in Fig. 4(A). Here, the optimal weights for
each comparator are found by solving Eq. (10) with K =5 x 10°
data samples. Two groups are with the same size Ny = N, = N/2,
but different threshold values of 6;/0x = —1 and 6,/0x = 1. For
comparison, the solid lines represent the MSE distortions for the
case of the identical threshold value setting. It is obvious that, for
large N, the optimal MSE distortion for the case of group thresh-
old levels is much lower than that of identical threshold levels.
A careful observation shows that, for the case of group thresholds,
the position of the minimum MSE distortion shifts to lower noise
intensities, rather than higher noise intensities as seen for identi-
cal thresholds. More interestingly, for the group threshold setting,
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Fig. 5. The MSE distortion of weighting before summation against increasing o
when the threshold values are identical, unique and grouped. Here, the number
of quantizers is N = 128.

the MSE shows the monotonic increasing behavior for N = 2. For
N > 2 quantizers, the MSE distortion can be reduced by optimally
tuning o. Similarly, we also compare the case of group thresholds
with the case of unique thresholds (black solid lines) in Fig. 4(B).
It is shown that, for large N, the MSE distortion for the case of
unique thresholds is much larger than that of group thresholds.
Other signal and noise distributions also demonstrate similar re-
sults (not shown here for simplicity).

3.4. Comparison of performance for different threshold setting
strategies

We now directly compare the MSE distortion for the optimal
weighted decoding method across each of the three cases of iden-
tical, unique and group threshold settings. Fig. 5 shows the MSE
distortion for the above three cases for N = 128. It is seen in Fig. 5
that the group threshold case gives the smallest MSE distortion,
and possesses the best performance for almost the whole range
of o. A further observation is that the minimum MSE for the group
threshold values occurs at an optimal level of o < 1, while the
identical and unique threshold cases have slightly higher minima
at a much larger o (o > 1).

At 0 =0, the MSE of the identical thresholds is the largest
among the three cases, while the MSE of the unique thresholds
is the smallest. The reason is that, for the identical thresholds,
all thresholds switch in unison, only a binary output signal with
state 0 or 1 can be obtained, and only a binary representation of
the input signal is available, resulting in a large MSE distortion. In
comparison, for the case of N unique thresholds (which is a spe-
cial case of the group threshold setting), the output is an N + 1
state representation of the input signal, which enables a smaller
MSE distortion.

These comparisons motivated us to seek a method for decreas-
ing the MSE distortion using the group threshold setting. As o
increases, it is seen in Fig. 5 that the MSE of the two group thresh-
old setting is much better than other threshold settings. It is also,
however, shown in Fig. 5 that, for very large noise levels, the MSE
distortions for all threshold settings tend to be equal, and the
group threshold values reduce to the signal mean, i.e. the iden-
tical thresholds case. These results are expected, because previous
work has shown that group thresholds are optimal except for very
small noise levels and for large noise; in the former case, unique
thresholds are optimal, while in the latter case, identical thresh-
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Fig. 6. The MSE distortion of weighting before summation compared to that of
weighting after summation against increasing o in the case of group thresh-
olds. Here, from top to bottom, the curves of MSE distortion are plotted for N =
2,4,8,16, 32,64, 128. The sizes of each group are Ny = N, = N/2, and the thresh-
old values within each group are 6;/0x = +1 and 6, /oy = —1, respectively. The red
solid lines show the MSE distortions of weighting before summation, and the blue
circles lines correspond to that of weighting after summation. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

olds are optimal [42,43]—our results in this paper are consistent
with this prior work. The task of determining the optimal number
of group threshold levels, group sizes and threshold values is an
interesting question for future work.

4. MSE distortion comparison between the case of weighting
before and after summation

In Section 3, it is observed that the performance of weighted
decoding in the case of a group threshold setting is better than
other threshold setting schemes. Thus, it is interesting to com-
pare MSE distortions between optimal weighted decoding versus
Wiener linear decoding; that is the MSE distortion comparison
between the cases of weighting before and after summation. It
is also known that the expected value of the encoding output is
E[y] = N/2 for the case of identical thresholds, but this result will
not necessarily hold for the case of group thresholds. Under such
a condition, the reconstruction points using the Wiener decoding
technique are different from Eq. (2), and take on the following
form [43]

E[xy]
var[y]

Fig. 6 shows the comparison of performance between the cases
of weighting before and after summation with group thresholds.
We here choose sizes of each group Niy = N = N/2, and the
threshold values for each group as 0;/0x = +1 and 6,/0x = —1,
respectively. In Fig. 6, the red solid and blue circles lines repre-
sent the MSE distortions of weighting before and after summa-
tion, respectively. The results demonstrate that weighting before
summation gives almost the same performance as weighting after
summation. The reason is that if the threshold values 6; and 6,
are mutually opposite real numbers, as illustrated in Fig. 6, aj is
then equal to ay in Eq. (18).

In order to further identify the MSE distortion difference be-
tween weighting before and after summation in the case of group
thresholds, we define the percentage P as

y= (y —E[y]), fory=0,1,---,N. (22)
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Fig. 7. The MSE distortion percentage difference between weighting before and af-
ter summation against the ratio o and the thresholds 6, /0y, for the given group
thresholds 6;/0x =1 and the total quantizer size N = 128. The array sizes of each
group are N1 = N = N/2, respectively.

_ MSEqafter — MSEpefore
MSEpefore

where MSEafrer, MSEpefore are the distortion values for weighting
after and before summation, respectively. In this way, for the given
group threshold level 6;/0x =1 and array size N = 128, the differ-
ence percentage P between the two decoding schemes, for various
6,/ox and o, is shown in Fig. 7.

In Fig. 7, it is seen that, for the symmetrical setting of 61 /oy =1
and 6, /ox = —1, the percentage difference is extremely small, but
always positive. This means that weighting after summation is al-
ways slightly worse than weighting before summation. However, it
is also clear that in this case, summing and carrying out Wiener
linear decoding is nearly as good as optimal weighted decoding,
because the distortion is only negligibly reduced. Consequently,
under these conditions the additional complexity required to ob-
tain optimal weights and use them in an array is unlikely to be
warranted, and the summing without first weighting used in the
original array can be considered to be a superior array configura-
tion.

However, it is also seen that, as the group threshold value
6> /0y increases, the difference percentage P presents a maximum
peak at 6/0x = 0.35 and o = 0.7. For the group threshold lev-
els of 6;/0x =1 and 6,/0x = 0.35, the MSE distortion curves of
two decoding schemes are illustrated in Fig. 8(A). It illustrates that
weighting before summation gives rise to a smaller MSE. Moreover,
as N increases, the difference between the MSE distortions for
the two decoding schemes becomes larger. The percentage differ-
ences P between two decoding methods are also clearly exhibited
in Fig. 8(B) for group sizes N1 = N, = N/2. It demonstrates that
weighting before summation is better than the case of weighting
after summation. Therefore, the conclusion that summing before
carrying out Wiener decoding does not significantly lower perfor-
mance is very much dependent on the choice of thresholds.

(23)

5. Conclusion and discussions

In this paper, we study the problem of optimizing the decoding
output signal through a summing array of binary quantizers. A new
optimal weighted decoding scheme is proposed, and the MSE dis-
tortions of this decoding scheme for three examples of threshold
settings, i.e., identical, unique and group thresholds, are analyzed
in detail. The obtained results show that the MSE distortion is the
lowest for the case of group thresholds. In this situation, the MSE
distortion of optimal weighted decoding, i.e. performed by weight-
ing before summation, is improved over that of weighting after

A
Nbx
©
=
=]
£
L
(42}
=
O 1 1
0 0.5 1 1.5
(¢}
0.2 w w w ‘ ‘ : :
B

0.15 1

o 0.1} 1

0.05 J

O L L
0 02 04 06 08 1 1.2 1.4
c

Fig. 8. (A) The MSE distortion of weighting before summation compared to that
of weighting after summation against increasing o for the case of group thresh-
olds, from top to bottom N =2,4,8, 16, 128. The red solid lines show the results
of weighting before summation, and the blue dashed lines show the results of
weighting after summation. (B) The MSE distortion percentage difference between
weighting before and after summation against increasing o for the case of group
thresholds, from bottom to top N = 2,4, 8, 16, 32, 64, 128. The array sizes of each
group are Ny = N, = N/2, respectively. The threshold values within each group are
01/0x =1 and 6, /oy = 0.35, respectively. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

summation. In addition, decoding performance of weighting after
summation is nearly as good as that of weighting before sum-
mation in certain threshold groups. This is a significant finding
for many potential applications inspired by SSR, because summing
without first weighting is much simpler than weighting and then
summing, and its MSE distortion performance is not reduced.

We note that, from the viewpoint of quantization theory, the
MSE distortion describes the average error between the input sig-
nal and the reconstructed output. The initial SSR research mainly
considers the viewpoint of information transmission, and thus the
mutual information is frequently used to analyze the channel ca-
pacity of SSR model. It will be very interesting to find the inherent
relationship between the two measures in the same situation; for
example, whether the optimal noise levels that correspond to the
minimum MSE or the maximum mutual information are the same
or not.

From the point of view of signal estimation theory, the mini-
mum MSE distortion will be no less than a theoretical limit given
by the average information bound [46], which is related to the
bias and the Fisher information of an estimator (i.e. the output
of the SSR model). Naturally, it is of future interest to develop
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a mathematical description for the minimum MSE distortion that
the optimal weighted decoding approach can achieve. This is an
unconstrained multidimensional optimization problem, since the
group sizes, the threshold value settings and the noise level will
be all unconstrained variables of the MSE distortion. How much
lower can the minimum MSE distortion of weighting before sum-
mation be than that of weighting after summation and to what
extent does it approach the theoretical average information bound?

Previously, mathematical expressions for the large N Wiener
linear decoding MSE distortion, and exact results for specific sig-
nal and noise distributions have been derived [43]. For the optimal
weighted decoding, with N1 ; going to infinity, the MSE expression
is more complicated than that of the optimal Wiener decoding.
Thus, there remains an open question that is of interest for our
future work, which is whether MSE distortion has asymptotic be-
havior or not.
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