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Abstract- In this paper, terahertz (T-ray) computed tomo-
graphic (CT) imaging [1] and segmentation techniques are inves-
tigated. The traditional filtered back projection is applied for the
reconstruction of terahertz coherent tomography. A set of linear
image fusion and novel wavelet scale correlation segmentation
techniques is adopted to achieve material discrimination within a
three dimensional (3D) object. The methods are applied to a T-ray
CT image dataset taken from a plastic vial containing a plastic
tube. This setup simulates the imaging of a simple nested organic
structure, which provides an indication of the potential for using
T-ray CT imaging to achieve T-ray pulsed signal classification
of heterogeneous layers. The wavelet based fusion scheme enjoys
the additional benefit that it does not require the calculation of
a single threshold and there is only a segmenter parameter to
adjust.

I. INTRODUCTION

'T-rays' is a collective term to describe the part of the
electromagnetic spectrum from 0.1 THz to 10 THz. The appli-
cation of T-rays, especially in biomedicine and quality control,
is attractive owing to two intrinsic properties: a non-ionising
nature and penetration through dry, non-polar and non-metallic
materials. Rapid improvements in T-ray detectors and sources
make it possible to image objects through optically opaque
layers. Currently, most THz pulsed imaging (TPI) is based
on the extraction of material parameters, which are calculated
based on (i) time-of-flight measurements in reflection and
transmission geometry or (ii) the variation in amplitude or
phase of the transmitted waveform at certain frequencies. THz
tomographic reconstruction is another interesting application
of T-ray imaging. It exploits methods from geophysical, radar
and optical diffraction techniques [1]. They are capable of
mapping the 2D and 3D distribution of scattering objects,
but with a constraint to image the shape profile of the target
object. At present, three dimensional (3D) T-ray CT imaging,
described in [1], has been developed based on coherent T-ray
detection techniques, which allows the imaging of the internal
structure and extract the frequency dependent properties in
three dimensions. Along with a dimension in time, this makes
it possible 4D datasets of the target sample.

Current two-dimensional and three- dimensional T-ray CT
imaging is affected by different types of noise, which can
restrict its usefulness [2]. The result of the noise is that the
acquisition conditions determine the received T-ray intensities
and similar substance shows various responses in different
portions of the same image. These drawbacks have prevented
successful development of accurate and reliable edge-detection

and segmentation algorithms for T-ray CT images. A reliable
and automatic segmentation detection is of great importance
in many applications of T-ray image processing, especially
for the T-ray pulsed signal classification of 3D objective CT
imaging with heterogeneous layers. (Handley et. al. 2002)
employed clustering techniques for segmentation with wavelet
preprocessing and a synthetic and a real THz slice are used
for the segmentation evaluation [3]. In comparison, our current
job utilises wavelet techniques to achieve segmentation and
the analysis of internal structure of the target object is used to
evaluate the segmentation quality.
The current wavelet scale correlation based segmentation-

by-fusion algorithms afford another approach in 3D T-ray
tomographic imaging to probe the interior regions of objects.
In conjunction with various edge detection techniques, our
algorithm provides quantitative information for measurement
and classification applications. Identification of a linear shift in
the computed centroids of each height is used for segmentation
evaluation, due to the strait internal structure of the plastic
tube. One of the main advantages of the algorithm is that,
in its simplest form, it requires only a single segmentation
parameter. In addition, a wavelet based segment-by-fusion
detection method for T-ray images is effective with respect
to noise.

The motivation for wavelet based segmentation is to ach-
ieve the discrimination of T-ray pulsed signals within a 3D
heterogeneous layers. It is observed that there exists difficulty
to divide the transmitted pulse via time slice for three classes:
the vial, the tube and the background, due to the lack of
obvious variety of peak and valley after the penetration of T-
rays through three target objects. This is because, at different
rotation angles and for different tested objects, there are dif-
ferent refractive, scattering and absorption coefficients, which
result in a great decrease in one of the peak values of the
response and a relatively large increase in the other. A simple
consideration for the slice of different target classes is the
application of segmentation techniques to T-ray CT functional
imaging, which affords an effective approach to define the
regions for different classes, i.e. classification of T-ray CT
images for functional imaging.

This paper contains the two main sections: methodology and
experimental results. The methodology section describes the
hardware and algorithms employed in this work. Section 2.1
describes the chirped probe pulse THz imaging system, which
forms the basis of the 3D T-ray CT system. Reconstruction
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Fig. 1. A chirped probe pulse THz imaging system for the realisation of a
3D T-ray CT imaging. After [1].

algorithms are discussed in Section 2.2, and Section 2.3
describes a novel method to achieve reconstructed segmenta-
tion, called wavelet scale correlation based segmentati-on-by-
fusion. Section 3 consists of the experimental segmentation
results and the evaluation of segmentation quality. Section 4
concludes this paper.

II. THE METHODOLOGY

A. A Brief Introduction to T-ray Functional Imaging

A 3D T-ray CT system is based on the standard THz-TDS
scanned imaging system illustrated in Fig. 1. The target is
mounted on a motion stage that allows it to be translated by T-
rays in x and z axes. Meanwhile, the object can be rotated and
linearly moved along the y axis. As seen in Fig. 1, Terahertz
pulsed imaging (TPI) is achieved by repeating pulsed Terahertz
measurements in a 2D raster scan. An ultrafast pulsed laser
beam is split into separate probe and pump beams. The path
length of the pump beam is modulated by a delay stage, then
transmitted through a chopper and enters one of the optical
rectification crystals, which acts as a T-ray emitter. The T-
rays produced are recollimated and focused onto a sample
by a pair of optical lenses. The T-rays emerging from the
sample are adjusted again by another pair of optical lenses
before being combined with the probe beam. As a result, the
T-ray response and the probe beams propagate through the
THz detector crystal co-linearly. For the current chirped pulsed
imaging system, the optical probe beam is chirped by a grating
pair and allows an electro-optic crystal to sample the THz
temporal profile simultaneously. The detector crystal produces
optical outputs that are proportional to the T-ray response, and
the signals are measured with the use of a photodetector. Based
on the different peak times of the measured pulses, sets of 3-D
volume data of an object can be obtained for different object
angles and the change of the position along the x and z axes,
once the measurement process is completed.

In this experiment, a four-dimensional (4D) dataset is
acquired with polar coordinates (0, 1, y, t), where 0 is the
projection angle, y is the vertical axis (rotation axis), I is
the perpendicular distance from projection path to rotation
axis, and t is the sampled time. The corresponding rectangular
coordinate system in the frequency domain, transformed from

Fig. 2. Two sets of coordinate systems for the reconstructed T-ray CT. A
typical THz pulse spectrum is shown as a function of time t in the inset. After
[1].

the polar coordinate system, labeled by (x, y, z, w) is employed
for the reconstruction of the object's optical properties, where
w indicates the frequency, and the x, y and z axes represent
standard Cartesian coordinates (the y axis is perpendicular to
the page). The processing required to effect this transformation
is described in section 2.2 below. The resolution for each
slice image reaches 1 mm, and the T-ray CT images have
a resolution of 89 x 89 pixels. For further details on the
experiments, please refer to [1].

B. An Overview of CT and T-ray CT

Computed tomography produces sectional images of an
object, which has important application to capture internal
organs or structures in its actual 3D position. A filtered back
projection algorithm, used for the calculation of the inverse
Radon transform [4], [1], is employed to reconstruct a target
object. The quantities obtained are the object's frequency
dependent optical properties.

Normally, a filtered back projection algorithm can be re-
alised geometrically by propagating a sinogram image back
into image space, with a ramp filter to diminish noise and
discretisation artefacts (see Fig. 3(b)). A sinogram is also
called Radon transform data, denoted below by X and is
simply a collection of the projections at all the projection
angles. A ID projection operation at each projection angle is
a linear integral of the image intensity along projection path
L, which satisfies the following function:

p(l, 0) = o(x, z)dL = X(o) (1)

where all points on projection path L satisfy the equation:
x cos 0 + z sin 0 = 1. Fig. 3(a) shows the radon projection.
Compared to X-ray computed tomographic techniques, a T-

ray CT experiment is capable of measuring the transmitted
THz pulse as a function of time t, for a given projection
angle and projection offset Pd (t, 0, 1). The Fourier transform of
this time domain pulse yields Pd(w, 0, 1). The reference pulse
pi(t) and the corresponding Fourier response Pi(w) can be
measured by removing the target object from background. If
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Fig. 3. Illustration of the geometric paths regarding a general scheme of
computed tomography. (a) The geometric path of ID projection operation.
(b) The geometric paths regarding filter back projection operation.

the target is rotated and propagated by T-ray beams, Pd (w, 0, 1)
may be evaluated by adding sufficient projection angles to
allow the filtered back projection algorithm to be applied at
each specific frequency w. This is based on the approximation
that the detected THz signal is viewed as a linear integral of
the incident THz pulse,

Pd (w, 0,1) = Pi (w)exp [1
L (0,1)

iwrt(r) Al

c

where Pd and Pi are the Fourier transforms of the detected
and incident THz signals, respectively; c is the speed of light,
L is the projection path, a straight line between the source and
detector. The unknown complex refractive index of the sample
is noted by n(w, r) = nt(w, r) + ik(w, r), where n6(w, r) is
the real refractive index deviation and k(w, r) is the extinction
coefficient, related to absorption coefficient a via k(w, r) =

a/2ki (ki is the incident extinction coefficient). Let us define
that

Pd(O,1)

Pn 2arg[
Pi(O /) ]/ki

Po, - -2 11
Pi'(O(1'/

n6(r)dr = {n6(r)}
L

j a(r)dr = {a(r)}

where arg(x) denotes the phase or argument of complex
valued x, 11 x 11 denotes the magnitude of the complex scalar
x, and Pn and PO are the projection data inputs to the filtered
back projection algorithm as required to reconstruct n6 and a,

respectively, at a specific THz frequency w. The sign r denotes
the position of the incident field (the sensor).

The filtered back projection algorithm for T-ray CT recon-

struction is expressed as follows:

s(x, y) S(0, ) t exp[i27&1]dt dO. (5)

where S(O, () is the spatial Fourier transform of the parallel
projection data, defined as

s(0 $= s(O, l)exp[-ti27r1]d(, (6)
-00

here, s(O, 1) is the measured projection data, ( is the spatial
frequency in the I direction. One of the advantages of T-
ray CT over X-ray CT is that s(O, 1) may be one of several
parameters derived from the THz pulses. For instance, either
Eq. 3 or Eq. 4 can substitute for s(O, 1). The choice can be
made based on the desired application. In order to obtain a
3D image reconstruction, each reconstructed horizontal slice
and surface is rendered for the identification of objects in
a 3D volume space. T-ray CT has the potential to identify
targets based on their frequency responses. The full frequency-
dependent reconstruction algorithm described above can be
applied to a vial sample to demonstrate frequency-dependent
3D reconstruction.

Fig. 6(a) shows the two output THz pulsed responses
measured in a time scan of optical delay line; the dash
line is viewed as a reference pulse. Fig. 6(b) shows the log
spectrum of the time-domain waveforms in (a). The black
solid line indicates the de-convolved Fourier spectrum that
is achieved via dividing the Fourier coefficients of detected
signal (object) by the those of the incident signal (free-space).
The de-convolved Fourier spectrum can be viewed as a one
dimensional projection of the THz signal. The oscillations
which follow the two main pulses, and which appear as dips
on the three T-ray spectra, are a result of water vapor in the
beam path. From the spectra, it is evident that the useable
bandwidth of the signals is limited to 0.5 THz, because most
of the source power is at frequencies below 0.5 THz. Therefore
the reconstructions at higher frequencies suffer from additional
artifacts caused by noise.
The object photograph of a plastic vial containing a different

plastic tube, simulates a simple nested structure as shown in
Fig. 4(a). The target is imaged with a 1 mm step size in the x
and y dimensions, and at projections separated by 10°. First
the reconstruction is performed using the timing of the peak of
the THz pulse in the time domain to yield a reconstruction of
the bulk absorption coefficients. For the current experiment,
the real part of the expression log[Pd(w)/Pi(w)] is used to
reconstruct T-ray CT at each sampled frequency. The central
slice is reconstructed at each of the ten lowest frequencies,
from 0.0213 to 0.213 THz, (illustrated in Fig. 5) chosen
for the strong signals at those frequencies. The 3D rendered
image is illustrated in Fig. 4(b), which is the combination of
the reconstructed slices at a number of target heights. The
resulting isosurface is constructed using the pixels where the
reconstructed absorption coefficients are evaluated. The recon-
structed image dimensions are quite accurate, with the vial and
cylinder diameters being within 15% of the actual dimensions
measured with calipers. However, the vial thickness is much
thicker than expected because of the coarse reconstruction grid
size of 1.5 mm. The grid size may be improved using more
projection angles.

C. Wavelet Based Segmentation by Fusion

As described above, T-ray CT extracts the frequency depen-
dent 3D characteristics of a target sample. This makes possible
rich, four dimensional datasets that describe the sample. To
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(a) (b)

Fig. 6. Illustration of T-ray signals and spectra. (a) Detected T-ray signal
and reference; (b) their spectra in log scale with offsets of 2 a.u. and 4
a.u. corresponding to the original and de-convolved spectra, respectively, for
clarity.

frequencies at the same measurement height presents com-
plementary information about the measured visual physical
parameters at the region investigated.

The proposed fusion scheme processes images via the fol-
lowing steps. A linear combination of weighted slice images is
used to perform plane image fusion in the current experiment
for enhanced contrast of features and reduced inconstancy.
The weights are selected based on the various intensity for
the different frequency of T-ray CT images. In this work, the
weighting scheme is empirically chosen to be 1/15 for the
five lower frequencies and 2/15 for the five higher frequencies
to compensate for the attenuation in signal strength in the
higher frequency components and to highlight the consistency
in the boundaries. In this way the fusion takes place at
each measurement height and the more dominant features at
each sampled frequency is preserved (ten sampled frequencies
are illustrated for this paper). Subsequently a new image
is constructed by emerging the ten weighted images. The
resultant fused image has clear target contours and shows
strong contrast between the target regions and the background.
Fig. 7(a) shows the resultant fused image with size of 89 x 89.

2) Discrete Wavelet Transforms in Two Dimensions:

The 2D DWT can be realised by digital filters and down-
sampling the T-ray image. Expansion by a 2D scaling function
and three 2D wavelet functions are calculated by taking the ID
fast wavelet transform (FWT) of the rows of an image and the
resulting columns [7]. This algorithm can be inverted via up-
sampling the signals, filtering and adding the output together
to recover the low-frequency subband at the previous level of
the multiresolution analysis. The process is repeated for the
depth of the DWT to obtain the original image. In our work,
however, the individual subbands at the lowest resolution are
isolated (i.e. all other subbands at the same level are set
to zero) before application of the inverse wavelet transform
(IWT). This processing allows the wavelet scale correlation
based segmentation to be performed (section 2.3.3).

The block diagram, see Fig. 8 shows the 2D wavelet
transform procedure.

Fig. 9(a) and (b) are the reconstructed sub-images after tak-

(a) (b)

Fig. 4. A vial containing a plastic tube is used as a simple nested structure
to test the T-ray CT system and to demonstrate the resulting reconstruction
and classification of the T-ray CT imaging. (a) The optical image of the vial
and the tube. (b) The 3D reconstruction of the vial and tube based on the
T-ray CT slices.

Fig. 5. Illustration of the reconstructed T-ray CT slices at the first 10
frequencies, in increasing order from top left at the object height of 7 mm.

achieve the final T-ray CT image, an inverse Radon transform
(IRT) is computed on the Fourier coefficients of the measured
signals. In order to obtain the material discrimination within a
three dimensional (3D) object, a set of linear image fusion
and novel two dimensional (2D) wavelet scale correlation
segmentation are adopted. The methods are applied to a T-ray
CT image dataset of a plastic vial containing a plastic tube,
with an aim to simulate the imaging of a simple nested organic
structure. The setup is imaged at various heights, ranging from
5 mm to 9 mm (from the bottom), in 1 mm increments.
Image fusion algorithms are conducted on the low frequency
reconstructed T-ray CT images at different target heights for
smooth version of CT images. In turn, 2D discrete wavelet
transform (DWT) is taken on the fused image. In order to
reconstruct the same size of the approximate sub-images as
the fused image, inverse discrete wavelet transform (IDWT) is
performed after the appropriate subband is isolated. The target
segments are localised by computing the correlation between
the first two approximate scales sub-images.

1) Image Fusion of T-ray CT Images for a 3D Target:

A fused image can be created via emerging two or more im-
ages, acquired from a single source to obtain the sharp display
of various materials and structure [5], [6]. Our segmentation
techniques is based on a plane fusion approach to match and
fuse multiple desirable slice images at various frequencies into
a single slice image. The current image fusion is conducted at
pixel level and the recovered images at the different sampled
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Fig. 7. Illustration of reconstructed central slice T-ray CT images. (a) Fused
image via merging T-ray CTs at ten lowest frequencies. (b) Final extracted
object segments from the background using wavelet based segmentation by
fusion.
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Fig. 8. Illustrate the 2D discrete wavelet transform procedure. After [8].

(b)

ing 2D inverse wavelet transform of approximate coefficients
at the first and second wavelet decomposed scales. The T-ray
fused image at a 7 mm target height is used. A Daubech-
ies 4 wavelet as a mother wavelet is applied for this case. In
each group of the two scales of reconstructed T-ray CT sub-
images, the first sub-image is the reconstructed approximate
sub-image and the other three are detail reconstructed sub-
images. It can be seen that the approximate sub-images are

the smooth version of original image.

3) 2D Wavelet Scale Correlation Based Segmentation:

The aim of segment detection is to achieve differentiated
subdivision of constituent regions of an image. The method
used in this paper is motivated by one dimensional wavelet
scale correlation denoising. Firstly, the target cross-sections
are assumed to be corrupted by additive white Gaussian
noise, which is randomly distributed. The target objects are

separated by their absorption coefficients, which are indicated
by the intensity in the images. With the incremental wavelet
scale, the noise is reduced and the target intensity (energy)
is increased in an image. After extracting the low frequency
2D subband of fused T-ray CT images, an increased energy

with an increase in wavelet scale is used as a cue to extract
the target regions. This cue is consistent with the procedure
used in ID wavelet de-noising, where the noise usually appear
as small coefficients in the wavelet subbands. By computing
a correlation of two scales of wavelet subbands, the signal

Fig. 9. Illustration of the sub-images via reconstructed approximation coef-
ficients. (a) The reconstructed approximate sub-image after one-scale wavelet
decomposition of the fused T-ray CT. (b) The reconstructed approximate sub-
image after two-scale wavelet decomposition of the fused T-ray CT.

components should survive in large coefficients while the noise
would be diminished. The wavelet scale correlation based
segmentation algorithm is summarized as:

1. Calculate 2D reconstructed approximation images at first
scale Si (m, n) and second scales S2 (m, n), i.e. for transform
depths of 1 and 2, respectively.

2. Compute the correlation R1,2(m,n) for the two scales:

R1,2(m, n) = Si (m, n) X S2 (m, n).

3. Compute the energy of R1,2(m, n) and Si(m, n):

Es, = ZS'(m,n)

ER1,2 = Z, R1, 2 (m, n).

(7)

(8)

(9)

In order to make it comparable between the wavelet co-

efficients and the correlation coefficients, it is necessary to
normalise the coefficients:

R1,2(m, n) = R1,2(m, n) Es1/ER1,2. (10)

4. The wavelet energy R12(m, n) and A Si(m, n) is
compared. Here, A = 1. If R12(m, n) > A Si(m, n) , (A
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Fig. 10. Segmented image sets at heights of (a) 5 mm; (b) 6 mm; (c)
7 mm; (d) 8 mm and (e) 9 mm from bottom of vial. The four subfigures,
clockwise from top left, illustrate the tube edges, tube segments, the air
segments (background) and vial segments, respectively.

is a parameter, chosen to be 1 for this experiment), the pixel
at (i, n) is extracted as part of a target segment, otherwise it
is regarded as background.
The Canny edge detector, combined with Otsu's threshold

method [8], is used to perform the final subtraction of each
target function edge in the T-ray CT image. It should be noted
that the current algorithm only requires the adjustment of a

single parameter A in the processing.

III. EXPERIMENT RESULT

The algorithm described in Subsection 4.2 is applied to
extract segments corresponding to the vial and tube. The
extracted approximate sub-images, after computation of the 2D
DWT of the 89 x 89 fused images, are shown in Fig. 9(a) and
(b); the Daubechies 4 wavelet is used in this case, as mentioned
above. The result of the correlation is shown in Fig. 7(a).
Figures 10(a)-(e) illustrate the resultant segment subimages
corresponding to heights of 5 mm to 9 mm from bottom to top.
The upper left portion in each subfigure is the edge subimage
of the tube; the upper right portion is the segment subimage
of the tube; the lower left portion is the vial segment region;
the lower right portion is the air segment.

The segmentation quality cannot be directly verified since
the explicit ground truth is not known. This situation is typical
of tomographic applications, where it is not always possible to
cut up the subjects to provide knowledge of the ground truth.
Alternatively, a comparison with manual segmentation is un-

desirable, since that depends on the selected threshold, which
cannot afford a standard resultant segment for comparison.

In this experiment, we exploit the fact that the internal
structure, the tube, is straight. This implies that the segmented
plastic tube positions (see top right of each sub-figure in
Fig. 10) should be proportionally displaced from each other,
since they correspond to constant increments of 1 mm in
height. To obtain this measurement, we find the centroid of
the extracted vial tube for each height (labelled L1-L5) and
the resultant x and y locations are plotted in Fig. 11. The
achieved linear regression line, with slope of -0.7 and an offset
of 81.54, is used to fit the five measured centroids. The mean

Fig. 11. Illustration of the centroid locations of the target tube segment
corresponding to five target heights, LI to L5. The three dotted lines are the
connections of each of the two measured centroids from five target heights;
the solid line is to fit the five measured centroids. The X and Y axes represent
the position of each pixel with the unites of X and Y in 'pixel'.

square error of each point to the given solid line is 1.034. This
indicates that our algorithm is capable of locating the centroid
of the plastic tube to within a few pixels. Given the number
of noise sources and the quality of the reconstructed images,
this error is considered to be reasonable.

IV. CONCLUSION

This paper investigates terahertz computed tomography and
the relative application of wavelet based segmentation by
fusion. It is a first exploration of automatic T-ray CT target
identification within 3D heterogeneous structures. The algo-
rithm successfully segments different target regions and is
able to correctly locate the regions to within a few pixels.
This provides motivation for future application of classification
algorithms for material identification of 3D heterogeneous
layers. For future work, it is suggested that the algorithm be
characterised further by studying the effect of the segmentation
parameter A on the results. In addition, more experimental
work is needed to verify the general performance of this
algorithm.
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