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Abstract—Spike Timing Dependent Plasticity (STDP) is a time-
based synaptic plasticity rule that has generated significant
interest in the area of neuromorphic engineering and Very Large
Scale Integration (VLSI) circuit design. During the last decade,
STDP and STDP-like learning mechanisms have shown promising
solutions for various real world applications, ranging from pat-
tern recognition to robotics. This paper presents a novel analog
VLSI model for STDP that possesses advantages compared to
previously published VLSI STDP designs. The presented STDP
circuit is capable of reproducing the outcomes of several well
known experiments using various plasticity rules inducing STDP
protocols that utilise pairs, triplets, and quadruplets of spike
patterns. When the circuit is compared to state-of-the-art VLSI
STDP circuits, it shows a compact and symmetric design that
makes the proposed circuit a powerful component for use in
designing STDP or time-based Hebbian learning experiments and
applications.

I. INTRODUCTION

Neuromorphic VLSI is the realm of design and implementa-

tion of phenomenological and biophysical models of neurons

and synapses. It dates back to the early 90’s with early research

pioneered by Carver Mead [1]. Ever since, many neuromor-

phic engineers have been attempting to implement neurons

and synapses in VLSI with various degrees of details and

levels of abstraction aimed at benefiting from the low power

and compact implementations offered by VLSI technology.

There are many examples of VLSI neurons and synapses in

the literature [2]–[6]. Neurons are the producers of action

potentials (spikes), and synapses are the interfacing elements

among neurons, believed to be where learning and memory

takes place in the brain. When implementing a synapse within

a larger system, such as a network, one should implement the

mechanism under which the synaptic efficacy can be altered

by pre-synaptic and post-synaptic activities, also referred to as

the synaptic plasticity rule [7]. This is in order to ensure that

the strength of a synapse can adjust to changes in response to

these activities, thus allowing the system to adapt to a dynamic

environment [8]. In the past, there have been various rules

presented that modify the synaptic weights in response to dif-

ferent parameters including but not limited to, i) the activity of

pre- and post-synaptic neurons [7], ii) the timing of the spikes

from pre- and post-synaptic neurons [9], iii) the membrane

potential of the post-synaptic neuron [10], or iv) a cooperative

and simultaneous interaction of parameters mentioned in (i) to

(iii) [11]. Various VLSI implementations of these rules exist

in the literature [5], [12]. In these implementations, the main

goal has been to reproduce the results of neurophysiological

experiments but, simultaneously, there has always been effort

aimed at reducing the area occupied by these learning circuits

and/or minimising their power consumption.

This paper presents a novel analog VLSI circuit model

for triplet-based STDP (TSTDP). The new design presents a

significant improvement in terms of physical implementation

area and less power compared to previous implementations

presented in [2], [5], [6], [12]–[14] without compromising the

output response performance when compared to biological ex-

periments. More details on how we achieve this improvement

is presented in Section III. The circuits are also compared in

the discussion and comparison section of the paper.

II. PREVIOUS PAIR AND TRIPLET SPIKE TIMING

DEPENDENT PLASTICITY CIRCUITS

A. Pair-based STDP Circuits

Pair-based STDP is the conventional form of a synaptic

plasticity rule that potentiates the synaptic efficacy of a

synapse, if a pre-synaptic spike precedes the post-synaptic

action potential. In contrast, synaptic depression occurs when

the order of spikes is reversed, namely if a post-synaptic

neuron fires a spike before its pre-synaptic afferent [15]. A

well-known phenomenological representation of the PSTDP

that implements the above mentioned mechanism is shown in

Eq. 1,

Δw =

{
Δw+ = A+e

(−Δt
τ+

)
if Δt ≥ 0

Δw− = −A−e(
Δt
τ− )

if Δt < 0 ,
(1)

where Δt = tpost − tpre is the time difference between a

single pair of post- and pre-synaptic spikes, τ+ and τ− are time

constants of the learning window, and A+ and A− represent

the maximal weight changes for potentiation and depression,

respectively [16].

From a circuit designer point of view, one can represent the

synaptic weight (w) with a voltage stored across a capacitor

and hence implement the changes in synaptic weight (Δw)

with charging and discharging the capacitor. The amount

of the charging and discharging that represents the required

potentiation and depression of the synaptic weight can be con-

trolled using circuitry that respectively determine the amount

of current flowing in and out of the capacitor.
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There are a number of circuits e.g. those presented in [2],

[4], [6], [12], [17] that approximate Eq. 1. Some of these

circuitries implement the potentiation and depression mech-

anisms of this equation and do not implement the exact ex-

ponential form shown in the PSTDP phenomenological model

presented in Eq. 1. Although these circuits cannot generate

the exponential learning window, they can regenerate some

of the biological experiments and also show the potentiation

and depression potentials as the basic parts of the PSTDP

rule. Examples of these circuits that implement PSTDP rule

are in [4], [13]. These circuits are able to generate a learning

window with depression and potentiating components occuring

for the expected combination of spikes, however it is not

the exponential learning window typically used in simulation

studies [18], [19].

On the contrary, there are some other VLSI designs for

PSTDP that are good approximations of Eq. 1. These designs

utilise transistors in their sub-threshold (weak inversion) area

of operation and therefore take advantage of their exponential

Drain-Source current to charge and discharge the synaptic

weight capacitor in an exponential manner. The circuit pro-

posed in [20] is a good example of this type of design.

B. Triplet-based STDP Circuits

In addition to pair-based interactions between pre- and post-

synaptic spikes, the TSTDP rule takes into account higher

order interactions between combinations of triplets of pre-

and post-synaptic spikes to alter the synaptic weight [21]. A

mathematical representation of this learning rule is given by

Δw =

⎧⎨
⎩

Δw+ = e
(
−Δt1
τ+

)
(
A+

2 +A+
3 e

(
−Δt2
τy

)
)

Δw− = −e
(
Δt1
τ− )

(
A−

2 +A−
3 e

(
−Δt3
τx

)
)
,

(2)

where Δw = Δw+ for t = tpost and if t = tpre then

the weight change is Δw = Δw−. Here A+
2 , A−

2 , A+
3 and

A−
3 are potentiation and depression amplitude parameters,

Δt1 = tpost(n) − tpre(n), Δt2 = tpost(n) − tpost(n−1) − ε and

Δt3 = tpre(n)−tpre(n−1)−ε, are the time differences between

combinations of pre- and post-synaptic spikes. Here, ε is a

small positive constant that ensures that the weight update

uses the correct values occurring just before the pre or post-

synaptic spike of interest, and finally τ−, τ+, τx and τy are

time constants [2].

In analogy to the PSTDP circuits, the TSTDP circuits can

be designed using two different approaches. The first approach

designs the circuit in a way that it has the capability to

reproduce an exponential behavior shown in Eq. 2, e.g. the

design presented in [20]. The second approach, however, does

not result in the exponential behavior and only implements the

timing-based potentiation and depression mechanisms such as

the design presented in [4]. Using these approaches, a number

of VLSI designs for TSDTP have been presented in the

literature. As already mentioned, the benefit of implementing

a TSTDP circuit is its increased capabilities in reproducing

behavior found in complicated biological experiments that

the PSTDP circuit fails to reproduce. Our previous studies

show that the exponential form of the PSTDP and TSTDP

hypothesis are not really necessary for generating the ex-

perimental results observed in hippocampal [22] and visual

cortex experiments [21], [22]. The TSTDP circuit presented

in [6], [17] does not demonstrate the exponential learning

window, nonetheless, it is still able to reproduce the behavior

of the targeted biological experiments fairly similar to its

counterparts with exponential capabilities that are presented

in [2], [12].

This paper presents a new design for a TSTDP rule that

utilises the second approach and aims at implementing the

required synaptic dynamics for potentiation and depression

and not the hypothetical exponential behavior presented in

Equations 1 and 2. The circuit and its simulation results are

presented in the following sections.

III. PROPOSED TRIPLET-STDP CIRCUIT

The proposed circuit for the triplet STDP rule (shown in

Eq. 2) is demonstrated in Fig. 1. This circuit operates as

follows: When a pre-synaptic spike, Vpre(n), is received at the

gate of M6, Vpot1 reaches ground resulting in switching on

M8, and then starts to increase linearly toward Vdd with a

rate determined by Vtp1 that is applied to the gate of M5.

In fact, Vpot1 that controls the existence of the potentiation

in the first place and allows the current to flow through the

potentiation branches (M7-M9 and/or M15-M16-M8-M9) at

the time of arrival of a post-synaptic spike at M9, represents

the first potentiation term in Eq. 2 shown as e
(
−Δt1
τ+

)
.

Furthermore, the addition term shown in the second term of

first line of Eq. 2 that determines the amount of potentiation

as a result of both pair and triplet terms, is approximated

through a sum of two currents. The first current is controlled

by VA+
2

, while the second one is controlled by VA+
3

and the

second potentiation dynamic, Vpot2. This voltage depends on

the arrival time of the previous post-synaptic spike, Vpost(n−1).

When a post-synaptic spike arrives at M18, Vpot2 reaches

ground and after the post-synaptic pulse duration is finished, it

starts to increase linearly toward Vdd with a rate determined by

Vtp2 that is applied to the gate of M17. Therefore, the current

flowing through M15-M16 approximates A+
3 e

(
−Δt2
τy

)
. This cur-

rent accumulates in the circuit with another current controlled

by VA+
2

and forms an approximation to
(
A+

2 +A+
3 e

(
−Δt2
τy

)
)

,

which represents the second term of the first line of Eq. 2.

The same dynamic operates in the depression half of the

proposed circuit, in which current flows away from the weight

capacitor, Cw. In this part, current will flow through M10-

M12 if there has been a post-synaptic action potential in a

specified time window defined by Vtd1 (which corresponds

to τ−), before a pre-synaptic spike. In addition, another current

that can discharge the capacitor and results in a depression,

will flow through M10-M11 and M3-M4, if there has been

a previous pre-synaptic spike in a specified time window,

set by Vtd2 (which corresponds to τx), before the current

pre-synaptic spike arrives at M10 and with the condition of

having a post-synaptic spike arrived at M13 in a specified time
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Fig. 1. Proposed circuit for the full TSTDP rule. The circuit for minimal
TSTDP does not include transistors M1-M4 shown in the dashed box.

window set by Vtd1 before the current and after the previous

pre-synaptic spikes.

This circuit is a major improvement over our previous

circuit presented in [6]. In our previous design, there are four

branches resulting in increases or decreases in the voltage

across the weight capacitor, two of which are associated with

depression and the other two with potentiation. In the new

proposed design, there is only one pull-up transistor branch

(M7-M9) for potentiation and one pull-down branch (M10-

M12) for depression. In other words, the previous design

approximates a rearrangement of Eq. 2 shown as

Δw =

⎧⎨
⎩ Δw+ = A+

2 e
(
−Δt1
τ+

)
+A+

3 e
(
−Δt2
τy

)
e
(
−Δt1
τ+

)

Δw− = −A−
2 e

(
Δt1
τ− ) −A−

3 e
(
−Δt3
τx

)e
(
Δt1
τ− )

.
(3)

Hence as Eq. 3 shows, two instances of e
(
−Δt1
τ+

)
during

potentiation and two instances of e
(
Δt1
τ− )

during depression

are needed. As a result more transistors are used to duplicate

similar dynamics of the equation. We can also remove four

transistors from the time constants dynamics in the design

and use only a single transistor to form potentiation and

depression dynamics. Considering these insights, the new

circuit uses eight transistors less to implement the full TSTDP

rule and therefore it requires only 18 transistors arranged in

a symmetric and compact form as shown in Fig. 1. This

potentially represents an area saving of 30%.

IV. SIMULATION RESULTS

This section presents simulation results of a minimal triplet

circuit that corresponds to the minimal TSTDP rule presented

in [21]. As the rule is minimised, the proposed circuit also

can be further modified and hence the number of transistors

is reduced. According to the minimal rule presented in [21],

the depression contribution of the spikes triplet interactions

can be neglected without having a significant effect on the

circuit performance in reproducing the targeted biological

experiments. The triplet depression part in the full TSTDP

circuit (Fig. 1), is the four transistors surrounded in the red-

dashed box. Therefore, the minimal TSTDP circuit, is the one

shown in Fig. 1 minus the part enclosed in the red dashed

box, i.e only 14 transistors are needed to generate all desired

biological experiments.

The minimised circuit was simulated in HSpice using the

0.35 μm C35 CMOS process by AMS. All transistors in the

design (shown in Fig. 1) are set to 1.05 μm wide and 0.7 μm

long. The weight capacitor value is set to 50 fF. It should

be noted that the circuit was simulated in an accelerated

time scale of 1000 times compared to real time. However,

for the sake of simplicity when comparing the results to the

experiments, all shown results are scaled back to real time.

Furthermore, in the shown simulation for the hippocampal

experiments, we have used one pair, triplet or quadruplet of

spikes to perform the required weight modifications under

various protocols that will be discussed in the following

subsections. In addition, the nearest-spike interaction of spikes

has been implemented in the proposed circuit that corresponds

to the nearest-spike model of TSTDP rule presented in [21].

In each of the following subsections a figure is presented

that shows how the circuit performs weight modifications

compared to the experimental data. In each figure, the data in

black represents the experimental mean weight change under

a specific protocol (i.e. pairing, quadruplet, and triplet) and the

black bars show the standard error mean of weight changes. In

addition, the red lines show the weight change, Δw, predicted

by the circuit under the same protocol as the experiments. The

data points and the error bars are exactly those that have been

used in [21], in order to test their proposed TSTDP model.

Since the proposed design in this paper is a synthesis of this

TSTDP model, same data points and error bars have been

utilized to test the designed circuit.

A. Pairing experiments (STDP learning window)

The first simulation performed on the proposed circuit was

reproducing the STDP learning window that demonstrates

spike timing dependent potentiation and depression. Fig. 2

shows how the proposed circuit can successfully perform the

timing dependent weight modifications. This figure shows the

normalised experimental data extracted from [9] in blue. It

suggests that the proposed circuit behavior under a pairing

(window) protocol, which considers a pair of pre- and post-

synaptic spikes with a delay of Δt = tpost− tpre can approxi-

mate the experimental data generated with the same protocol.

Beside the blue experimental data, two other experimental

values for Δt = 10 and Δt = −10 are shown with their

standard error mean represented by black bars. These points

are those used in [21] and therefore we use them for testing

our circuit performance as we are implementing the circuit for

the model presented in [21].

B. Quadruplet experiments

In addition to the pairing experiments, the proposed circuit

is also able to generate the result produced in biological
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Fig. 2. STDP learning window produced by the proposed minimal TSTDP
circuit under pairing protocol.

experiments using quadruplet of spikes in the forms of pre-

post-post-pre or post-pre-pre-post. The utilised quadruplet

protocol in our simulation is the same protocol that has been

used in the hippocampal experiments in [22] and also has

been used to model the TSTDP rule in [21]. Figure 3 shows

the simulation results along with the biological experiment

results performed in the hippocampal and under quadruplet

protocol. One quadruplet of spikes has been used to generate

the shown results. The quadruplet is composed of either a post-

pre pair with a delay of Δt1 = tpost1 − tpre1 < 0 precedes

a pre-post pair with a delay of Δt2 = tpost2 − tpre2 > 0
with a time T > 0, or a pre-post pair with a delay of

Δt2 = tpost2 − tpre2 > 0 precedes a post-pre pair with a

delay of Δt1 = tpost1 − tpre1 < 0 with a time T < 0, where

T = (tpre2+ tpost2)/2− (tpre1+ tpost1)/2. Similar to [21], in

the quadruplet experiment in this paper, Δt = −Δt1 = Δt2 =
5 μs. Figure 3 depicts that our simulation results are in a good

agreement with the behavior observed in the experiments and

also it is similar to the results obtained using mathematical

model of TSTDP presented in [21].

C. Triplet experiments

In addition to window, and quadruplet experiments shown

in previous sections, the proposed circuit can replicate similar

behavior to biological experiments under spike triplet protocol.

This protocol is as follows: There are two different patterns of

triplet spikes. The first triplet pattern is composed of two pre-

synaptic spikes and one post-synaptic spike in a pre-post-pre

configuration. As a result, there are two delays between the

first pre and the middle post, Δt1 = tpost−tpre1, and between

the second pre and the middle post Δt2 = tpost − tpre2.

The second triplet pattern is analogous to the first but with

two post-synaptic spikes, one before and the other one after

a pre-synaptic spike (post-pre-post). Here, timing differences

are defined as Δt1 = tpost1 − tpre and Δt2 = tpost2 − tpre.

Figure 4 demonstrates a good match between experiments

and the triplet simulation results obtained using the proposed

minimal TSDP circuit. This figure depicts how well the

proposed TSTDP circuit can distinguish between pre-post-pre

(Fig. 4-a) and post-pre-post (Fig. 4-b) experiments, the ability

Fig. 3. Quadruplet experiments performed in the hippocampal and qualita-
tively replicated using the proposed minimal TSTDP circuit.

TABLE I
MINIMAL TSTDP CIRCUIT BIAS PARAMETERS FOR REPLICATING THE

HIPPOCAMPAL EXPERIMENTS INCLUDING PAIRING, TRIPLET AND

QUADRUPLET EXPERIMENTS.

Parameter name Vtp1 Vtp2 Vtd1 VA2+ VA2− VA3+

Bias voltage (V) 2.73 2.75 0.25 2.69 0.37 2.96

that all previous PSTDP circuits are clearly lacking [6], [21].

The bias voltages used to generate the results in Figs. 2 to 4

are shown in Table I. These are corresponding bias voltage

parameters that are used for the triplet, quadruplet and pairing

(window) experiments. In order to show how good the circuit

can approximate all these experiments, the Normalised Mean

Square Error (NMSE) can be defined as

NMSE =
1

p

p∑
i=1

(
Δwi

exp −Δwi
cir

σi

)2

, (4)

where Δwi
exp, Δwi

cir and σi are the mean weight change

obtained from biological experiments, the weight change ob-

tained from the circuit under consideration, and the standard

error mean of Δwi
exp for a given data point i, respectively; p

represents the number of data points in a specified data set (in

the case of this paper, p =13). These 13 points include, eight

points from triplet experiments shown in Fig. 4, three points

from quadruplet experiments shown in Fig. 3, and finally

two points from pairing experiments shown in Fig. 2. These

13 points are selected in a way similar to the main TSTDP

study [21].

Circuit simulation results show a NMSE equal to 1.40

which is better than the reported NMSE value of 2.9 that was

calculated using the mathematical model of minimal TSTDP

rule and optimised parameters presented in [21].

V. DISCUSSION AND COMPARISON

Simulation results in Section IV demonstrate how the pro-

posed minimal TSTDP circuit that has only 14 transistors can

replicate the results of various STDP experiments and obtain

a low NMSE for different experiments. In this regard, there

are a number of points that should be noted.

1) Here the circuit does not show an exponential learning

window for potentiation and depression, but simulation results
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Fig. 4. Triplet experiments performed in the hippocampal and qualitatively
replicated using the proposed minimal TSTDP circuit. The black bars repre-
sent the experimental mean weight change and the lines on them show the
standard deviations observed in the experiments and for various values of
Δts. (a) Simulation using a pre-post-pre combination of spikes with shown
Δt1 and Δt2, (b) Simulation using a post-pre-post combination of spikes
with shown Δt1 and Δt2.

in this paper as well as [6] suggest that the exponential

behavior is not necessarily needed for regenerating the re-

quired biological behaviors. One should keep in mind that the

exponential behavior shown in Eq. 1 is only a hypothesis that

can approximate the behavior found in some biological experi-

ments including the learning window, but in its pair-based form

it is not able to account for more complicated experiments

e.g. triplet, quadruplet and pairing frequency experiments. The

proposed circuit is an efficient design, that can reproduce the

results from complicated experiments reported in [21], [22],

while using a fewer number of transistors compared to other

designs with the same capabilities.

2) In terms of the number of transistors, the proposed

circuit is simpler and takes fewer transistors to implement

the minimal TSTDP rule, compared to all previous designs

presented in [2], [6], [12]. More importantly, the proposed

design that implements the complex TSTDP rule has a fewer

number of transistors than several of other VLSI circuit

designs for the PSTDP rule presented in [13], [14], [20]. This

highlights an improved design in two very significant aspects

for neuromorphic VLSI design, compactness and low power

consumption.

3) The proposed design uses a 50 fF capacitor, which makes

the design suitable for plasticity experiments either for short

term plasticity or with high spike frequency. However, for

lower spike frequencies and long term plasticity, the latest

updated value across the capacitor will start to leak away. This

is a well-known problem that has been tackled in different

ways by neuromorphic engineers [3]. A possible approach to

address this issue is to employ a bistability mechanism pro-

posed and used by Indiveri et al. in [4]. Using their approach,

the weight is modified in the presence of pre- and post-synaptic

spikes using the STDP circuit, and when there is no spike

arriving at the STDP circuit, the stored voltage across the

weight capacitor is pushed either upward to a predetermined

maximum, or downward to a specified minimum voltage.

Another approach is to utilise standard memory such as SRAM

to store the latest value of the weight that has been recently

updated by a circuit similar to the proposed circuit in this

paper. It should be noted that in this case, we need bulky

DAC and ADC circuits that is far from the design ideal of

compactness and low power consumption. A recently proposed

approach is to utilise reverse-biased transistors to decrease the

leakage currents and therefore increase the duration the weight

value can be stored on the capacitor [3]. Although this is a

nice approach for reducing the leakage in the circuit, it is not

really useful for long-term plasticity experiments in the order

of seconds.

4) The other point that should be taken into account when

designing any analog VLSI circuit, including neuromorphic

circuits, is the process variation associated with VLSI technol-

ogy. As the proposed design uses the voltage applied to the

gate of transistors to tune the required parameters of the model

and reaches the targeted behavior to mimic the experiments,

it is sensitive to the variation of bias voltages and therefore

susceptible to process variation. Although these bias voltages

can be generated using an off/on chip bias generator [23], the

circuit was modified to alleviate the effect of process variation.

The modified circuit is demonstrated in Fig. 5. In this circuit,

the tuned currents in any of the current mirror transistors will

set one of the TSTDP rule parameters (see Eq. 2). These

parameters can be adjusted by means of a single current

source, Ibias, and adjusting the aspect ratio of the respective

transistors. For instance, the width of M5 will tune the pairing

potentiation time constant, τ+, with respect to the value of the

circuit main bias current, Ibias. An NMSE = 2.04 is achieved

using transistor sizes shown in Fig. 5. Although the mismatch

among these transistors will result to some drop in the circuit

performance, our simulations (not presented here due to the

lack of space) show, it is more stable than the previous design

using bias voltages (Fig. 1).

In addition, there are other approaches that can be utilised

in order to either decrease the effect of process variations

like the design technique employed in [24] in neuromorphic

modelling of ion channel and ionic dynamics in large scale

neuronal networks, or to compensate for the variations caused

by the fabrication process with a post-fabrication calibration

technique [2]. Although the latter is simpler and does not need

extra circuitry for alleviating the effect of process variation, it

is not applicable for large scale neural networks. On the other

hand, the former causes an increase in the complexity of the
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Fig. 5. Minimal TSTDP circuit modified from the initial design presented
in Fig. 1 in order to gain more stability against process variation. The used
bias current is Ibias=1.5 nA. The transistor lengths are all 0.7 μm and widths
are all 3wmin=1.05 μm, unless shown beside transistors.

designed circuit that results in an inefficient realisation of large

scale networks. Hence, a trade off between design complexity,

and accuracy should be considered. As a next step for this

research, we also plan to compare both mentioned approaches

for tackling process variations in the proposed design.

VI. CONCLUSION

A novel compact VLSI design for pair, triplet and quadru-

plet STDP is introduced. Simulation results show that the

proposed circuit can reproduce behavior found in some bi-

ological experiments including pairing, triplet, and quadruplet

experiments in the hippocampus. The presented circuit consists

of a fewer number of transistors compared to many of its pair-

based STDP counterparts, and all previous TSTDP circuits.

This can lead to a compact and low power implementation

of the proposed circuit that makes it promising for use in

large scale spiking Neural Networks with the synapses with

increased abilities.
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