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ABSTRACT

The phenomenon of noise enhanced signal transfer, or stochastic resonance, has been observed in many nonlinear systems
such as neurons and ion channels. Initial studies of stochastic resonance focused on systems driven by a periodic signal,
and hence used a signal to noise ratio based measure for comparison between the input and output of the system. It has
been pointed out that for the more general case of aperiodic signals other measures are required, such as cross-correlation
or information theoretical tools. In this paper we present simulation results obtained in a model neural system driven by a
broadband aperiodic signal, and producing a signal imitating neural spikes. The system is analyzed by using cross-spectral
measures.
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1. INTRODUCTION

This paper aims to build on previous work which introduced a new measure to the study of Stochastic Resonance (SR),
that of a frequency dependent Signal to Noise Ratio (SNR), based on the Cross-power Spectral Density (CSD) between
input and output signals in a nonlinear system.1, 2 It was pointed out in this work that conventional measures of the output
SNR in systems in which SR occurs fail both for conventional periodic SR, when the signal is large compared to the noise,
and for broadband input signals. This is due to the conventional SNR measure depending on measuring the output noise
power as that which occurs when no signal is present. However, for more general conditions, the input signal and noise
cross-modulate, and the output noise spectrum cannot be taken as that which occurs when no signal is present. Hence, for
computation of output SNRs in such systems, it is necessary to be able to separate output signal and noise components
for all frequencies at which the signal exists. Hence it was proposed (in particular for the context of SR research) that an
appropriate means of achieving this separation is to classify the output signal as that component of the output spectrum
which is the magnitude of the CSD between the input signal and the system output, divided by the Power Spectral Density
(PSD) of the system input, with the remainder of the output spectrum being noise. Here, we show that such a separation
of signal and noise has a strong basis in signal processing theory and applications, and relate it to other standard signal
processing techniques, including the coherence function3 and Wiener-Kolmogorov filtering.4 We illustrate the method can
be applied to aperiodic SR in neurons, by examining a model neural system driven by a broadband input signal.

2. POWER AND CROSS-POWER SPECTRAL DENSITIES

The PSD, Sxx(f), of an ergodic, finite power signal (such as a stationary random signal), x(t), is given by the Fourier
transform of its autocorrelation function,3 Rxx(τ), as

Sxx(f) =
∫ ∞

−∞
Rxx(τ) exp (−j2πτ)dτ.
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The CSD of two such signals, x(t) and y(t) is given by the Fourier transform of the cross correlation of x and y, Rxy(t),
as

Sxy(f) =
∫ ∞

−∞
Rxy(τ) exp (−j2πτ)dτ.

Unlike the PSD function, which is always real, the CSD is a complex function of frequency. We also state a well known
inequality3 relating the CSD to the PSDs of x and y,

|Sxy(f)|2 ≤ Sxx(f)Syy(f).

One of the uses for the CSD function, is the coherence function, which for two signals x(t) and y(t) is defined as3

Γ2
xy(f) =

|Sxy(f)|2
Sxx(f)Syy(f)

. (1)

This function is real valued between 0 and 1, and is a measure of the linearity between x and y, i.e. if a perfect linear
relationship exists between x and y at frequency f then the coherence function will be equal to one at that frequency and
|Sxy(f)|2 = Sxx(f)Syy(f). Thus, it can be considered to be a correlation coefficient for the frequency domain.

The coherence function has been used previously in the context of SR, both for conventional periodic SR and aperiodic
SR.5, 6 The first work on aperiodic stochastic resonance used the cross-correlation measure.7 It was subsequently noted5

that if the coherence function can be found, the cross correlation measure and the correlation coefficient easily follows
since the correlation between the input and output is

Cxy =
∫

f

Re[Sxy(f)]df.

The input and output autocorrelation functions, or mean square power’s are similarly obtained from the integral over all f
of their PSDs. Hence, the correlation coefficient is

ρxy =

∫
f

Re[Sxy(f)]df√∫
f

Sxx(f)df
∫

f
Syy(f)df

.

2.1. Linear systems

CSDs can arise when two correlated signals are added, for example, if the two signals are s(t) and n(t), the result x(t) =
s(t) + n(t) has auto-correlation

Rxx(τ) = 〈x(t)x(t − τ)〉 = 〈[s(t) + n(t)][s(t − τ) + n(t − τ)]〉
= Rss(τ) + Rsn(τ) + Rns(τ) + Rnn(τ).

Taking the Fourier transform of both sides gives the PSD of x(t) in terms of the spectral densities of s(t) and n(t) and the
CSD of s(t) and n(t) as

Sxx(f) = Sss(f) + 2Re[Ssn(f)] + Snn(f), (2)

where we have used the property that Ssn(f) = S∗
ns(f), where ∗ is the complex conjugate. Note that if s(t) and n(t) were

uncorrelated then Ssn(f) is zero for all f and the output spectral density is the sum of the spectral densities of x(t) and
n(t).

We may also be interested in the CSD of s(t) and x(t), i.e. Ssx(f). This is, again, the Fourier transform of the cross
correlation of s(t) and x(t), which is

Rsx(τ) = 〈s(t)x(t − τ)〉 = 〈s(t)[s(t − τ) + n(t − τ)]〉
= Rss(τ) + Rsn(τ).

Taking the Fourier transform of both sides gives

Ssx(f) = Sss(f) + Ssn(f).
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The magnitude squared of Ssx is given by

|Ssx(f)|2 = Ssx(f)S∗
sx(f)

= (Sss(f) + Ssn(f))(Sss(f) + Ssn(f))∗

= Sss(f)(Sss(f) + 2Re[Ssn(f)]) + |Ssn(f)|2. (3)

If we substitute (2) into (3) we get

|Ssx(f)|2 = Sss(f)(Sxx(f) − Snn(f)) + |Ssn(f)|2 (4)

and the coherence function is

Γ2
sx(f) = 1 − Snn(f)

Sxx(f)
+

|Ssn(f)|2
Sss(f)Sxx(f)

∀f s.t Sss(f)Sxx(f) �= 0.

2.1.1. Uncorrelated signal and noise

If the signal and noise are uncorrelated then Ssn(f) = 0 and from (2) the sum of the PSD’s is the output PSD. Therefore
from (4) we get

|Ssx(f)|2 = S2
ss(f),

and the coherence function between s and x is

Γ2
sx(f) =

Sss(f)
Sss(f) + Snn(f)

, (5)

and is only unity when noise is absent. Thus, the coherence function can be reduced from unity by the presence of noise,
even when the signal and noise are added and uncorrelated, simply due to the noise being nonzero at frequencies present
in the signal.

2.2. Nonlinear systems

We now consider the general case of a system with input signal, s(t), subject to additive noise, n(t), so that the overall
input is x(t) = s(t) + n(t). Let the output be the result of a nonlinear transformation of x(t), i.e. y(t) = T [x(t)]. Then
the PSDs of s and y are Sss(f) and Syy(f) respectively, and Ssy(f) is the CSD between s and y.

An ideal metric for such a system is one which will give a consistent, frequency dependent, phase independent measure
for an output SNR under all circumstances, including either periodic, aperiodic or broadband input signals, and regardless
of whether the signal is subthreshold or not, or has small amplitude compared to the noise or not. To this end Kiss1

previously defined the following “generalized amplification” factor, which is a complex function of frequency,

K(f) =
Ssy(f)
Sss(f)

. (6)

Using carets to indicate output signal and noise, as opposed to input signal and noise, we can simplify the notation used by
Kiss 1 to define the “generalized output signal” spectrum as

Ŝss(f) = Sss(f)|K(f)|2 =
|Ssy(f)|2
Sss(f)

. (7)

Note that since the PSD is a real number, |Sss(f)|2 is simply Sss(f)2. It was noted that Ŝss(f) can be considered to be
the spectrum of the signal component of the output signal and that the remainder of the output spectrum is noise so that

Ŝnn(f) = Syy(f) − Ŝss(f). (8)

Substituting (7) into (8) gives the output noise spectrum in terms of the signal PSD, the CSD and the overall output PSD as

Ŝnn(f) = Syy(f) − |Ssy(f)|2
Sss(f)

.
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Thus, the output SNR obtained with these quantities is a function of frequency given by

SNR(f) =
|Ssy(f)|2
Sss(f)

Syy(f) − |Ssy(f)|2
Sss(f)

. (9)

We now add several observations and caveats to this measure.

Firstly, in order to avoid infinities, the quantity K(f), and therefore the output SNR, must be defined only for frequen-
cies for which Sss(f) is non zero and not a delta function. Delta functions will occur in the input spectrum if the input has
non zero mean, or contains periodic components. To avoid this scenario, we will consider only non-periodic, zero mean,
ergodic random signals.

Secondly, the “generalized amplification” factor can be seen to look like the same quantity as the susceptibility function,
χ(f) used in the context of linear response theory, for which it is stated that

Ssy(f) = χ(f)Sss(f).

Linear response theory also states that for a sufficiently weak input signal, the output spectrum is

Syy(f) = S0
yy(f) + |χ(f)|2Sss(f),

where S0
yy(f) is the output PSD which occurs when s(t) = 0.5 However, for the general case we are considering, these

equations are not valid, since in linear response theory, the susceptibility is taken to be constant for a system, regardless of
the input, whereas K(f) is defined for a combination of the system and input.

Thirdly, from (1), we can rewrite (7) and (8) in terms of the coherence function as

Ŝss(f) = Γ2
sy(f)Syy(f)

and
Ŝnn(f) = (1 − Γ2

sy(f))Syy(f).

Hence, if s and y were linearly related, then 1 − Γ2
sy(f) = 0, the output signal would be the entire output spectrum, and

the output noise would be zero. We also can now write

SNR(f) =
Γ2

sy(f)
1 − Γ2

sy(f)
. (10)

This relation between frequency dependent SNR and the coherence function can also be found in Gabbiani8 and Borst et
al,9 as well as the same means of output signal and noise separation. In particular, it has been applied to neural systems,
as early as 1991 by Bialek et al.10 It can also be seen that this formulation of SNR is effectively a renormalization of
the coherence function. If the coherence function approaches unity, then the SNR approaches infinity. If the coherence
function is zero, then the SNR is zero. If the coherence function is one half, then the SNR is unity. Hence, measuring
system performance by the SNR gives exactly the same information as the coherence function, and vice versa. However
the SNR may be more useful if comparing two systems with nearly the same performance, as the coherence function near
zero and one is effectively highly compressed compared to the SNR.

The very fact that the SNR can be expressed in terms of the coherence function, which is a measure of the linearity be-
tween two signals, may seem surprising since we have aimed to derive a measure that is robust to nonlinear transformations
of a signal. However, the root of this fact can be seen by re-examination of (6) and (7). Even though K(f) may not be a
linear function of f , these equations define a linear relationship between the PSDs of s(t) and y(t), in the sense that Ssy(f)
is a linear function of Sss(f). Furthermore, this does not mean that the method is not applicable for highly nonlinear signal
transfer, since we do not define K(f) as being applicable for all possible input signal and noise combinations, but define
it, given a signal and noise combination.

Fourthly, we note that electronic engineers also use (6) in linear systems theory, except that K(f) is usually specified
as the “transfer function,” H(f), which is used to define a linear system. Again, the approach taken here differs from such
linear systems theory, in that K(f) is not defined by only the system, but also by the input signal and noise.
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2.3. Applicability to linear systems
To illustrate that the frequency dependent SNR is applicable to linear systems, we find from Section 2.1 that when two
signals s(t) and n(t) are added,

Ŝss(f) =
|Ssx(f)|2
Sss(f)

= Sxx(f) − Snn(f) +
|Ssn(f)|2
Sss(f)

= Sss(f) + 2Re[Ssn(f)] +
|Ssn(f)|2
Sss(f)

,

and

Ŝnn(f) = Snn(f) − |Ssn(f)|2
Sss(f)

.

If the signal and noise are completely uncorrelated then Ssn(f) is zero and the output signal and noise are simply the input
signal and noise. Thus the SNR of (9) is simply the conventional linear systems definition,

SNR(f) =
Sss(f)
Snn(f)

. (11)

Notice also that the coherence function is given as in (5) and substitution of this expression into (10) gives exactly (11).

3. NEW INTERPRETATION

The quantity labelled as the “generalized output signal,” i.e. Ŝss(f), can be interpreted as an estimate for the input signal
PSD. The process of obtaining Ŝss(f) is implicitly a linear filtering operation, which depends on knowledge of the input
PSD. Hence, this filtering is similar to matched filtering, which also depends on knowledge of the input signal. To illustrate,
consider the system as a “black-box,” which has as input a known input signal, s(t), and an output y(t). The processes
internal to the black box are the addition of the input noise, n(t), to s(t) and the nonlinear transformation, T [s(t) + n(t)].
To obtain Ŝss, the CSD of the output of the black-box, and the input signal, s(t) is found, and divided by the PSD of the
input signal. These two operations form the filtering. The SNR can then be found from (9).

It is evident that such a filter will not be useful if the input signals’s PSD is unknown, since then there is no means of
obtaining Ŝss and therefore the output SNR cannot be determined. However, this method can provide a useful means of
characterizing a system, and determining performance for an expected input signal.

We note that this formulation has many similarities to the Wiener-Kolmogorov filter,4 where the output time signal,
y(t) is convolved with the linear filter given by

K(τ) = F−1

(
S∗

sy(f)
Syy(f)

)
.

This means that in the frequency domain

Ŝss(f) =
S∗

sy(f)
Syy(f)

.

Such a technique is well known in signal processing, and has been applied frequently in the computational neuroscience
literature in the analysis of neural spike trains.8, 11, 12

Note that if we were to define the spectrum of the output signal as

Ŝss(f) =
|Ssy(f)|2
Syy(f)

,

then the noise spectrum at the output can be considered as the difference between the input spectrum and the output
spectrum, which is

Ŝnn(f) = Sss(f) − Ŝss(f) = Sss(f) − |Ssy(f)|2
Syy(f)

,

and the signal to noise ratio at the output is

SNR(f) =
|Ssy(f)|2
Syy(f)

Sss(f) − |Ssy(f)|2
Syy(f)

=
Γ2

sy(f)
1 − Γ2

sy(f)
,

which is precisely the same formula as (10).
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4. RESULTS

We wish to apply the generalized frequency dependent SNR formula to a model neural system driven by a broadband and
aperiodic input signal. We consider only a simple model of a neuron that encapsulates its main nonlinearity– that of a
threshold. The output from the neuron is a spike when the input, s(t), is greater than the neuron’s threshold, θ. We also
assume additive Gaussian white noise, n(t), is inherent at the input to the neuron, so that the output contains noise due to
both the nonlinearity and the input noise. Thus, assuming an infinitesimal refractory, the neuron’s output is

y(t) =
{

1 if s(t) + n(t) > θ,
0 otherwise.

In the remainder of this section we examine the use of the frequency dependent SNR formula of (10) by simulating
input and output signals from this model neuron. Note that care must be taken when attempting to calculate spectral
densities and SNR’s by simulation. Due to the necessity to simulate signals by discrete time series, the Discrete Fourier
Transform (DFT) must be used, usually using the Fast Fourier Transform (FFT) algorithm. Inherent in the FFT is a gain
factor which depends on the number of samples used in the FFT. Furthermore, unlike for finite energy signals such as
pulses, for random signals, the magnitude of the FFT is not necessarily the correct quantity to take as the PSD. Instead,
estimation techniques such as Welch’s averaged, modified periodogram method are required.

4.1. Broadband random input signal

Here we examine the frequency dependent SNR measure for a wideband random input signal. The simplest way to illustrate
the effectiveness of the SNR measure is to let the input signal be a bandpass Gaussian random signal, s(t), with zero mean
and unity variance. We arbitrarily set the bandwidth to be 2 kHz between 4 and 6 kHz. In our simulations we use a
sampling frequency of 20 kHz. A realization of s(t) is shown in Fig. 1, and its PSD in Fig. 2.

Let the noise, n(t), be Gaussian white noise (in this case, since our simulations have a sampling frequency of 20
kHz, the noise bandwidth is effectively the Nyquist frequency of 10 kHz). Let the neuron’s threshold be θ = 3. Hence,
since the signal has unity variance, it will nearly always be subthreshold, and hence our simulation is exactly that which
is most commonly used in threshold-based SR studies; that of a subthreshold signal which to which noise is added, in
order to induce threshold crossings.13, 14 To illustrate the various spectra involved, Fig. 3 shows plots of the input and
output power spectral densities, and the magnitude of the cross spectral density obtained for 1000000 samples, and a noise
variance of 4. It turns out that this is close to the optimal value of noise variance for this signal and threshold. Despite
this, only a very slight increase in output PSD is evident in the bandpass frequencies, however, the magnitude of the CSD
is relatively large when compared to non-optimal values of noise, and it is this fact which leads to the SNR containing a
maximum near this point, as we shall now see.

Fig. 4 shows the SNR of (10) plotted against frequency for a number noise intensities. It is clear that there must be a
nonzero value of noise intensity which provides the optimal output response. Since Fig. 4 indicates that the output SNR is
about constant for the pass band frequencies, we show in Fig. 5 the value of the output SNR as a function of noise standard
deviation, for the center frequency of 5 kHz.
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Figure 1. 10 second realization of Gaussian bandpass signal generated by applying an elliptic filter to a sequence of Gaussian distributed
samples. Bandwidth is 2 kHz between 4 and 6 kHz.
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Figure 2. PSD of bandpass signal, implemented using Welch’s averaged, modified periodogram method. The bandpass nature of the
signal is clearly evident.
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Figure 3. PSD of input and output signals, and magnitude of CSD of input and output signals.
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Figure 4. Output SNR against frequency for four values of noise standard deviation.
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Figure 5. Output SNR at 5 kHz against log of noise standard deviation. The optimal noise standard deviation is 1.8.

5. CONCLUSIONS

It is clear from the results of the previous section that although we have shown SR occurring as expected, the very low
maximum output SNR means that the output signal is only slightly coherent with the input signal. However for other forms
of input signal we would expect the output SNR to be much higher than this.2 The main conclusion to be drawn from these
simulations is that the frequency dependent output SNR formulation outlined quite clearly is a valid measure for studying
SR. We have shown that it is closely related to the coherence function, and Wiener filtering, and since the latter technique
has been applied extensively in studies of neural spike trains, we expect that it could be usefully applied to studies of SR
in more realistic neural systems than that considered here.
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