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ABSTRACT

We apply the technique of the calculus of stochastic differential equations to the problem of noise in an electronic
circuit with positive feedback. We argue that this is a very natural approach to the more general problem of
noise in electronic circuits of all types. We apply the standard small-signal analysis to the circuit, incorporating
the standard high-frequency small-signal model for the field effect transistor. This allows us to derive a state-
variable model for the system, which is essentially a coupled system of Ordinary Differential Equations. If we
then incorporate a standard noise model for the field effect transistor, we obtain a coupled system of Stochastic
Differential Equations, or SDEs. We apply the stochastic differential calculus of Itõ to this problem and compare
the results with simulations. We examine the dependence of phase-noise on the system parameters. We also
simulate the case where the oscillations become large and use this to investigate the limits of the small-signal
approximation.
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1. INTRODUCTION

The traditional approach to thermal noise in circuits can be traced back to Johnson.1 Over the years, a number
of empirical techniques have been developed to estimate noise in active circuits that filter the Johnson noise. We
argue that an important issue in this analysis is the way in which one represents white noise. One surprising
aspect of white noise is that it cannot be constructed as an ordinary random process. True Brownian motion, if it
could be constructed, would contain gaps or jumps. Also, true Brownian motion would have infinite bandwidth
and would require infinite power to construct. Fortunately there is a well defined random process that can be
used to model white noise. This is known as the Wiener process or Brownian motion. We can say that an
infinitesimal increment of Brownian motion, dB, has the same measure as white noise, Z, over an infinitesimal
increment of time, dt. We can represent this symbolically as dB = Zdt. The theory of stochastic differential
equations2 establishes the existence of integration with respect to white noise, over a finite time interval [T1, T2],
I =

∫ T2

T1
f(t)dB. We argue that the calculus of stochastic differential equations is the natural tool to use to

analyse noise in electronic circuits. Further, we show that in many cases we do not actually have to solve the
SDEs directly in order to evaluate parameters of interest, such as noise power. It is possible to derive an ODE
from the SDE to describe the evolution of the parameters in time.

2. A ONE-DIMENSIONAL EXAMPLE

We consider the well known case of a resistor in parallel with a capacitor.3 This is shown in Figure 1. We expect
to find a mean-square voltage across the capacitor of,

〈
V 2

〉
= k T

C . This is clear if we regard the voltage across
the capacitor as a single degree of freedom and apply the principle of equipartition of energy,

〈
1
2CV 2

〉
= 1

2 k T .

We represent the resistor using a Norton model of an ideal resistor, R, in parallel with a noise source, denoted
by i0dB where i0 =

√
2 k T/R and dB is an infinitesimal increment of Brownian motion. In some of the literature

this is represented by dW which is an infinitesimal increment of the Wiener process. These two notations are
mathematically equivalent.
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Figure 1. RC parallel circuit, with resistor, R, noise current source, iodB, and capacitor, C.

The mean square current varies linearly with k T and the coefficient of k T is 2, not 4 as it is in some
references. The choice of 2 k T is required to make the results consistent with a definition of frequency used
for complex exponentials, rather than sinusoids. It is consistent with widely used definitions of power spectral
density and autocorrelation functions.4–7 It includes positive and negative frequencies and is called the two-sided
power spectrum.7

We consider the nodal equation for the circuit. We require
∑

dQ = 0. For the capacitor, we have dQ = CdV ,
where C is the capacitance and dV is an infinitesimal increment of voltage. For the resistor, we have dQ = V

R dt
and for the equivalent noise source in the resistor, we have dQ = i0dB, as discussed above. The nodal equation
then becomes

CdV +
1
R

V dt = i0dB, (1)

which is the SDE for this system. This can be re-written as an SDE in the narrow sense:

dV =
−1
RC

V dt +
i0
C

dB. (2)

This is of the form
dV = α(t)V dt + β(t)dB (3)

where α(t) = α = −1/(RC) and β(t) = β = +i0/C =
√

(2kt/ (RC2). If we define the expected value of V as
µ = E [V ] and the variance as ν = E

[
(V − µ)2

]
then it can be shown8 that

dν(t)
dt

= 2α(t)ν(t) + β(t)2. (4)

If we consider the steady-state situation after all transients have decayed then we have dν(t)
dt = 0, which implies

that

ν = E
[
(V − µ)2

]
= −β(t)2

2α(t)
=

kt

C
, (5)

which is the classical result. Note that we did not solve the SDE but only used it to derive an ODE. We did not
solve the ODE but only used it to derive an algebraic equation, which we then used to solve for the steady state
value of the noise power. We believe that this simple and systematic method is general and should find wide
application in the analysis of noise in circuits. In summary, we proceed from the circuit to a nodal, or mesh,
equations to an SDE to an ODE to an algebraic equation and then obtain estimates of noise power.

3. NOISE MODELS FOR THE JFET

The noise model that we use here, shown in Figure 2 is the one used by Abbott et al. and is essentially a
van der Ziel model with all noise sources referred to the input. For a JFET, the gate currents are limited by
reverse biased PN junctions. We regard the gate leakage current as negligible and have not included it in the
model.
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Figure 2. Noise model for a JFET. This is basically a van der Ziel model with all noise sources referred to the input.
The gate to source capacitance is represented by Cgs. This model includes the standard noise-free small signal model
for a JFET. The amplifying effect of the JFET is represented by the dependent current source, gm·Vgs. The noise is
represented by two sources at the input, Vn·dB1 and In·dB2 where dB1 and dB2 are infinitesimal increments of Brownian
motion.

4. A SIMPLE JFET CIRCUIT

We use a very simple version of the Colpitts oscillator with a FET as the amplifying element. This is shown
in Figure 3. In the Colpitts topology, the split capacitor, C1 and C2, allows for a feedback path with high
impedance and voltage amplification.

Figure 3. Standard, large-signal, schematic circuit diagram for a Colpitts oscillator using a JFET as the amplifying
element. There are noise sources in R1, R2 and J1.

5. ANALYSIS OF THE JFET CIRCUIT

If we analyse the circuit in Figure 3, using small-signal technique, and insert the noise model from Figure 2
then we obtain the complete small signal noise model for the Colpitts oscillator, shown in Figure 4. If the
circuit did not have noise sources then ordinary mesh and nodal analysis could be performed and we obtain a
standard state-variable model.9 With the presence of noise sources, Kirchhoff’s current law takes the form:∑

dQ =
∑

Idt = 0 where the contribution from a noise current source would be dQ = IndB. The increment
of accumulated charge (electric flux) at a node is always zero. With the presence of noise sources, Kirchhoff’s
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Figure 4. Small signal equivalent circuit, including the van der Ziel noise model. The FET is mapped into the equivalent
circuit with Source, S, Gate, G, Drain D. The earth is represented by E. The circuit has four energy storage elements,
Cgs, C1, C2 and L1. There are four corresponding state variables, Vgs, V1, V2 and I1. Further analysis shows that only
three of these are independent. There are four noise sources, Vn·dB1, In·dB2, IR1·dB3 and IR2·dB4. The nominal output
is the drain voltage, VD.

voltage law takes the form:
∑

dΦ =
∑

V dt = 0 where the contribution from a noise voltage source would be
dΦ = VndB. The increment of accumulated magnetic flux around a mesh is always zero.

We obtain a mesh equation for the mesh including the Gate G and the node A,

V1 dt − Vgs dt + Vn dB1 = 0, (6)

which indicates that the state-variables, V1 and Vgs are not independent. We can obtain a mesh equation
including L1, C1 and C2,

dI1 =
1
L1

·V1 dt +
1
L1

·V2 dt. (7)

The current through the noise source, Vn dB1 is undetermined but we can regard G and A as an enlarged node
and write

I1 dt + C1 dV1 + Cgs dVgs − In dB2 = 0. (8)

Finally, the source is simply a very large node

C1 dV1 − C2 dV2 + Cgs dVgs =
V2

R1
dt − gm Vgs dt + In dB2 − IR1 dB3. (9)

Equations 6, 7, 8 and 9 are the equations of state for this system.

The nominal output of the circuit is the drain voltage , VD. This can be expressed with an output equation,

VD dt = −R2 gm Vgs dt − IR2 R2 dB4. (10)

This completes the formulation of the circuit.
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6. OPEN QUESTIONS

The problem has been formulated but not yet completely solved. The plan is to analyse the noise power implied
by Equations 6, 7, 8, 9 and 10 using the technique impled by Equation 5 and to check the result using standard
numerical simulation techniques.10, 11
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