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ABSTRACT

We review various techniques from engineering and physics applied to the theory of financial risks. We also
explore at an introductory level how the quantum aspects of physics may be used to study the dynamics of
financial markets. In particular we explore how the path integral methods may be used to study financial
markets quantitatively.
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1. INTRODUCTION

Economics and the idea of trading goods can be found to have roots as far as the ancient times at the cradle
of all human civilization. This concept and the resulting methods have evolved into a complicated system that
involves billions of simultaneous transactions in the world. Presently all transactions are computerized— this
revolution began in the 1980’s when electronic trading, already a part of the environment of the major stock
exchange, was adapted to the foreign exchange market. As a result we have today a huge amount of electronically
stored financial data ready to be analyzed. The average time delay between two records can be as short as a few
seconds. Therefore one could use this data to study short or long term effects.

Financial systems are well known problems to economists and mathematicians who usually try to draw models
to help them predict parameters or trends in financial markets. However, in the recent years more engineers and
physicists are becoming involved in the analysis of economic systems. The standard approach used by physicists
is to apply techniques used in statistical mechanics to get some understanding of the dynamics of the financial
markets. For example attempts have been made to study the dynamics using a maximal entropy approach,! or
using a modified Ising model to study stochastic resonance and model financial crashes.? Another approach
can be carried out via the Black & Scholes option pricing model, in that case one would assume that the system
follows a geometric Brownian motion for some underlying asset, which is described by an Ito stochastic differential
equation (SDE). Further reading on SDEs may be found in the following references.® 3

One promising approach involves the use of path integrals. Path integrals were first introduced by Wiener
and Kac®® and then futher developed by Feynman (1948)? to perform calculations in quantum electrodynamics
(QED). The method has now become a very important tool as well as representing a very powerful tool for
elementary particle physicists. Engineers do use path integrals, for example, when studying radio frequencing
propagation.'®  Applications of path integral techniques'' to financial markets have also recently started to
appear in the literature, see for example Refs.!?14 and the references therein. The advantage of path integrals
when calculating an observable is that it takes into consideration the fluctuations associated with it and gives
an alternative approach to the Black—Scholes equation.

When one is working with a path integral, one usually works in some complex space like a Hilbert space
for example. Usually the states of the system are described by vectors in that space and the observables are
represented by various Hermitian operators acting on that space. So if we know the state of the system at a
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particular initial time, it is then possible to determine the state of that system at a later time in the future. In
general one is interested in calculating some transition probability that is used to calculate an expectation value
of some functional for a given stochastic process. For example for a European call option at the maturity time
T, the quantity of interest would be max{St — X,0}, where X is the strike price and St is the price of an asset
at the maturity time 7.

So the general approach in calculating these transition probabilities using path integral techniques is to
divide an interval between the initial and final time, into infinitesimal segments of a given length, then consider
all possible paths starting at a given point in that space at an initial time and ending at a later point in that space
at a final time. Each path is then approximated by straight line segments in each infinitesimal time interval and
is weighted by some exponential factor that is directly related to the action. The action is the integral over some
time interval of the Lagrangian. This is summed over all possible values of the parameter space at intermediate
times and finally normalized with a factor that is proportional to the number of degrees of freedom of the system.
Then we take the limit of the interval length to zero and the number of intervals to infinity while keeping the
difference between the final and initial time fixed.

2. CONCEPTS AND THE BLACK & SCHOLES FORMULA
2.1. Some Concepts

In finance one usually deals with a special class of financial contracts called derivatives. A derivative is a financial
product whose price depends upon the price of another financial product. These derivatives include, for example,
forward contracts, futures, options and swaps. Here we are only going to focus on the first three of these.

A forward contract is when one of the parties agrees to buy for a given amount an asset at a specified price
(called the forward price or the delivery price K) on a specified future date (the delivery date 7). The other
party agrees to sell the specified amount of the asset at the delivery price on the delivery date.

Futures are a forward contract traded on by exchange. The exchange is done through an exchange institution
or a delivery house.

An option is a financial contract that gives the holder the right to exercise a given action (usually buying or
selling) on an underlying asset of time 7" and at a price K. The price K is called the strike price and 7T is called
the expiration date, the exercise date or the date of maturity. There are two types of options, namely there is
the Call option, which gives the holder the right to buy the underlying asset by a certain date for a certain
price. Oppositely we have a Put option that is the same as the call option but instead of buying it is when
selling.

There are a few different sort of options and each of them carry a different name:

e American options: can be exercised at any time up to the expiration date.
e European option: can only be exercised on the expiration date itself *

e Exotic or Path dependent options: these options have values which depend on the history of an asset
price not just its value on exercise. An example would be an option to purchase an asset for the arithmetic
average value of that asset over the month before expiring.

— Barrier option: the option can either come into existence or become worthless if the underlying
asset reaches some prescribed value before expiring.
— Asian option: the price depends on some form of average.

— Lookback options: the price depends on asset price maximum or minimum.

Swaps involve a private agreement between two parties to exchange cash flows at a certain times in the
future according to some prearranged formula.

*Note that the terms “American” and “European” do not refer to the location of the option or the exchange. Some
options trading on North American exchanges are European.
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2.2. Option pricing in idealized markets

The idea is to find the rational and fair price C(Y,t) of the option under consideration. Since the price Y at
each time step t is a random variable, the value of the option at a time ¢ is a function of a random variable.

In 1973 Black and Scholes! !¢ proposed the first reliable solution of the option-pricing problem. In their
solution they assumed that the stock price Y (¢) can be described as an Ito process, namely a process defined
by the stochastic differential equation dY = a(Y, t)dt + b(Y,t)dW. In particular they assume that a stock price
follows a geometric Brownian motion

dY = pYdt + oYdW (1)
where 1 is the expected return per unit time, o2 the variance per unit time, and W is a Wiener process. That is
a = pY and b = ¢Y. This assumption implies that the changes in the logarithm of price are Gaussian distributed.

In that case, any function of Y must be a solution of the partial differential equation obtained from a special
case of Ito’s lemma, Eq. (66), valid for a geometric Brownian motion!'” (see Appendix A),
aC oC  19%°C oC
dC = |z=pY + — + = =—=0°Y?| dt + ——oYdW. 2
C=1" T T aave? Ty’ @
If we consider the portfolio of the holder is made up of number of shares A;, who is selling one derivative of the
stock at time ¢, where in the limit when ¢ becomes infinitesimal, A, = dC/9Y . The value of the portfolio is then

oC
b=V -, 3)
which implies that the change in the value of the portfolio ¢ over a time interval At is
oC
Ap = —AY — AC. 4
6= SoAY —AC @
Using Ito’s lemma, we have
oC oC  10°C , ., oC
From Eq. (1), we have
AY = pY At + oY AW (6)
Hence the change in ¢ may be rewritten and simplified to
oCc  10%C
Ap = — | = + ==—02Y?| At.
¢ {8154_28}/20 } ! @

The Black and Scholes assumption that a stock price follows a geometric Brownian motion turns out to be crucial
in deriving the rational price of an option. In fact without this assumption, A¢ could not be simplified as it
is in Eq. (7). The second key assumption concerns the absence of arbitrage, which means that the change in
the value of the portfolio A¢ must equal the gain obtained by investing the same amount of money in a riskless
security that provides a return per unit of time r. Under the assumption that r is constant,

Ad = roAt. (8)
By equating Egs. (7) and (8) we obtain
aC  10°C 4, oC

Eq. (9) is called the Black—Scholes partial differential equation. To obtain Eq. (9), no assumption about the
specific kind of option has been made. This partial differential equation is valid for both call and put options.
The appropriate C(Y,t) for the chosen type of option will be obtained by selecting the appropriate boundary
conditions, for example for a call option,

C = max{Y — K, 0} when t="T. (10)
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2.3. The Black—Scholes formula

Black and Scholes!® solved the partial differential equation, Eq. (9) (known as the Black—Scholes partial differ-
ential equation) by making the following substitution

C(Y,t)=exp[r(t —T)]y(z,t) (11)

where in this case the variable x is defined as

T = % <7‘ = %a2> [ln (%) = (r = %H) (t — T)} (12)

and the variables ¢’ defined as

— (r - 10“‘) (t—T). (13)

o2 2

With this substitution, the Black—Scholes partial differential equation reduces to a partial differential equation
describing the heat-transfer in physical systems, namely

Oy(x,t') _ OPy(x,t)

= 14
ot or? (14)
which can be solved analytically. Using Eq. 12 and 13, we find the solution takes the form of
C(Y,t) =Y N(d) — Kexp[r(t = T)] N(dz), (15)
where N(z) is the cumulative density function for a Gaussian variable with zero mean and unit standard devia-
tion,
In(Y/K) + (r+02/2)(T — t)
ovT —1t
and

do=dy —oVT —t. (17)

The Black—Scholes model provides two important financial instruments. The first one is that it brings us
an analytical solution for the rational price of a European option, secondly a trading strategy for building up a
riskless portfolio. However the solution of the equation is only valid under the following assumptions:

1. the stock price follows Ito’s stochastic process (see Appendix A for more details);
2. security trading is continuous;

there are no arbitrage opportunities;

selling of securities is possible at any time;

there are no transaction costs;

the market interest rate r is constant; and

N ook W

there are no dividends between t =0 and t =T'.

Hence the Black—Scholes model is a good framework for understanding and modeling an ideal financial market,
and provides only an approximate description of real financial markets.

572  Proc. of SPIE Vol. 5274

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/14/2012 Terms of Use: http://spiedl.org/terms



2.4. The Stratonovich convention

In general a stochastic differential equation (SDE) driven by state—dependent white noise, like a geometric
Brownian motion for example, is not coherent unless the multiplicative white noise term is well defined. There
are two different interpretations that are well known, the Ito!” and the Stratonovich.'® The Ito formulation is
commonly prefered by mathematician while the Stratonovich interpretation mostly favored amongst physicists.

The interpretation of a stochastic differential equation arises when dealing with multiplicative stochastic
differential equation, also called multiplicative Langevin equation

O = 1)+ 90)elt) (18)

where f and g are given functions and €(¢) is the Gaussian white noise, that is, a Gaussian and stationary
random process with zero mean and delta correlated. Alternatively Eq. (18) may be written in terms of the
Wiener process W(t), as in Eq. (1), where dW (t) = e(t)dt. When g depends on Y, Eq. (18) and Eq. (1) have
no meaning unless an interpretation of the multiplicative term g(Y)e(t) is provided, this interpretation must be
given because, due to the extreme randomness of white noise.

The value that Y should take is not exactly obvious even during an infinitesimal timestep dt. As we saw in
Section 2.2, for an Ito process, the value for YV is defined as Y = Y (¢). Alternatively the value for Y may be
defined at the middle of the time step

Y=y (t + %) =Y(t)+ %dY(t). (19)

This is known as the Stratonovich convention.

The interpretation chosen will mainly make a difference when one is considering the product of two random
processes, this is because the resulting differential will adopt a different expression as a result. The differential
of the product of two random processes is defined as

dXY)=[(X+dX)(Y +dY)] — XY. (20)
This may be written
d(XY)=XdX +YdY +dXdY (21)

or equivalently one may write the product of differential as

A(XY) = (X + dé) dy + <Y + dTY) dx. (22)

We say that the differential of a product reads in the Stratonovich interpretation when
d(XY) = XsdY + YsdX, (23)

where Yg and Xg are defined by Eq. (19).

In contrast we say that the differential of a product follows the Ito interpretation when
d(XY) = X;dY + Y;dX 4+ dXdY, (24)

where X;(¢t) = X (t) and similarly for Y (¢). Equations (22) and (24) can be generalized as the product of two
functions, w(Y") and £(Y") for example. In this case we may rewrite, in the Stratonovich interpretation, Eq. (23)
as

d(w€) = w(Ys)dg(Y) + £(Ys)dw(Y), (25)
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with dw = w(Y + dY) — w(Y), similarly for d¢(Y). One could also define a similar expression in terms of w(Y")
and £(Y) for the Ito interpretation, namely

d(wg) = w(Y)dE(Y) + E(Y)dw(Y) + dw(Y)dE(Y). (26)

If we now go back to the Langevin equation, Eq. (18), we can see what are the consequences of the above result.
In an Ito interpretation the value of Y, hence the value of g(Y'), describes a random process. That means that
we have (g(Y)e(t)) = 0, in other words ¢g(Y) is independent of €(¢). On the other hand, it can be proved that
within the Stratonovich framework the average of the multiplicative term reads (g(Y)g’(Y)/2), see Refs!® 20 for
more details.

The important question is, how does one relate the SDE from on framework to the other. In the Stratonovich
framework an SDE defined as in Eq. (1) can be written as

Ay = O (Ys)dt + g9 (Ys)dW (t). (27)
where Yy is defined in Eq. (19). In the Ito convention we have
dy = fO(vy)dt + gD (Y7)dW (¢). (28)

The functions f¥) and f(I) are different functions and may be related in the following2°

1 a9 (Y)
(€] — £(® gy
FO) = FOV) - 590 2 (29)
while the relation between the multiplicative functions ¢®) and ¢(*) is defined as
g Y) =g D(Y) (30)

Another crucial difference between the Ito and Stratonovich interpretation appears to be when a change of
variables is made on the original equation. It can be proved that when the Stratonovich convention is used the
standard rules of calculus hold as opposed to the Ito convention where new rules start to appear.

Let h(Y,t) be an arbitrary function of Y and ¢. In the Ito sense, the differencial of h(Y,t) reads?®

_ Oh(Y,t) oh(Y,t) 1 4 0?h(Y,t)
dh(Y,t) = 57 dYy + o + 59 (Y, ¢t) 32 dt (31)
whereas in the Stratonovich sense, we have
Oh(Ys,t) Oh(Ys,t)
dh(Y,t) = dX dt 32
(Vot) = X + = (32)

Inserting Eq. (28) into Eq. (31) one recovers Ito’s lemma defined in Appendix A, that is extensively used in
mathematical finance books.

3. THE PATH INTEGRAL APPROACH: AN INTRODUCTION

The path integral method is an integral formulation of the dynamics of a stochastic process. The method becomes
useful when one wants to calculate the transition probabilities, which are associated to a given stochastic process.
In this framework finite time transition probability can be written as a convolution of short time transition
probabilitieg! ! 13, 21,22

Once an explicit method is written down to calculate the transitions probabilities it is possible to calculate
the expectation values of the quantities of financial interest, given by the form

E[0;,Yi1] = /dzip(zi|zi71)0i(ezi)7 (33)
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where z = InY, p(z;|z;—1) is the transition probability, ; is an option at a given time slice ¢; and Y; is the price
of an asset at a given time slice ¢;. In this case E [0;, Y;_1] is the conditional expectation value of some functional
0; of the stochastic process.

The probability distribution function related to SDE verifies the so called Chapman-Kolmogorov equation,??
ie.,

p("|2) = / dzp(2"|2)p(2l2), (34)

which can be interpreted as the probability density of a transition from the value z’ at time ¢’ to the value z” at
time ¢ summed over all possible intermediate values z of the probability of separate and consequent transitions
2/ — z and z — 2”. If we now consider a finite time interval [t’,¢”] and we apply a time slicing, by considering
n + 1 subintervals of length At = (¢ —t')/n + 1 then Eq. (34) becomes

+oo +oo
p(z”|z/) = / / dz1 --~dznp(z//|zn)p(zn|zn,1)---p(z1|z/). (35)
— 00 —00
Now based on some realistic assumptions one needs to write down an expression for the transition probabilities
p(2;|zi—1) and then perform the calculation of the path integrals.

3.1. Transition probabilities with a Gaussian

In general we do not have an explicit expression for the transition probabilities for small time steps, However
using a Gaussian transition probability!3 2122
2 —2)?
27 (36)

1
p(Z'|z) = 727T02At exp {— ST

where At =t' —¢. A general expression of the transition probability for small time steps correct up to O(At) is
given by?!

oo 1 [z — z — A(2)At]?
P = Tt eXp{_ 202(z) At } (37)

Eq. (37) gives a prescription to write the solution of a Fokker—Planck equation in the form of a convolution
product of short—time transition probability functions. Substituting Eq. (37) into Eq. (35) we obtain

+o00 +o0 n+1 Z/ - 2 2
p(z"|z") = /_0O /_oo < dzy, H /FTUQ { ek ;a;(z)ii )2 } (38)
n+1

+o0 +oo 1 1 , 2
[W e [m dz1---dzp, (27T0-2(Z)At)n+1 exp {—m’; [Zk — Zk—1 — A(Z)At] } (39)

Now if we set

2
SO(ZMZkfl) = 2021(2,) |:(Zk _Aikil) - A] At, (40)

note that the term (z; — zx—1)/At in Eq. (40) can be interpreted as a a mean velocity in the time interval At
and 1/0? as a mass, then Eq. (38) may be written as

+o0 +<>o n+l
(Z//|Z/):/7 /7 - dzp H \/76)(13{ So zk,zk 1)} (41)
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Then a Lagrangian structure appears. Hence in the limit as n — oo, Eq. (41) may be formally written as the
path integral

Z(t")=z2' t .
p(2"|2') = [(t)_ D [g—lg] exp {—/t Lo [2(7’); Z(T);T] dT} . (42)

The functional measure, D [0_12], means summations on all possible paths starting from z’ and arriving at z.
The integral to the exponent must be interpreted as the limit of the discrete summation for n — co and the
function Lo [2(7); 2(7); 7] is a Lagrangian function defined by

Lo [3(r); 5(r); 7] = % [5— A(z,7)]°. (43)

Since in the limit n — oo only O(At) contribute to the integral, the formal expression in Eq. (42) gives the
exact finite transition probability, moreover there is a complete equivalence between the differential stochastic
equation, the Fokker-Planck equation and the path integral approach.?!

This formalism is used to calculate the transition probabilities. Once these are evaluated the option price is
computed as the conditional expectation value of a given functional of the stochastic process. For example, the
price of an European call option will be given by

+oo

¢ = expl—r(t’ — ) /

— 00

dz' p(2',t'|z,t) max [ezl - X, O} , (44)

with X being the strike price. While for an European put, it will be

—+oo

P = exp[—r(t' —t)] /

— 00

dz' p(2',t'|z,t) max [X - ezl,O] ) (45)

where r is the risk—free interest rates.

The method may also be applied to an american options and can be extended to cope with other financial
derivatives (with path dependent features). This formalism can be extended to other models beyond the dynamics
of geometric Brownian motion. In Ref.,'®> Montagna Et. Al have used this formalism to compare their results
with those available in the literature for European and American options in the Black—Scholes model and found
to be in good agreement with the standard numerical procedures used in finance.

Other applications of path integrals may be found in previous works. Linetsky?* who showed how path
dependent option could be formally priced in a path integral framework. He considered several examples of one
and two factor path dependent options. Baaquie?® has shown how path integrals methods can be used to price
vanilla options with stochastic volatility. In subsequent publication the same author has also shown how the
Heath—Jarrow—Morton (HJM) formulation of treasury bonds in terms of forward rates can be reformulated as a
problem in path integration.?® Later on Otto?” demonstrated how to use path integration to price bonds and
bond options under general short rate models.

4. AN EXAMPLE WITH MAXIMAL ENTROPY

In this section we describe a small model?® that describes the evolution of money distribution from a Gaussian
to a non-Gaussian distribution. These types of distribution are sometimes referred as a fat tail distribution.

In a series of lectures,?’ Carter presented a simple agent based economic model. In this model every agent
randomly selects someone else among a collection of agents and gives to the target one dollar until he runs out of
money. Carter and Shapiro showed, using maximal entropy, that no matter how the money is initially distributed
ultimately it obeys a Boltzmann—Gibbs distribution.

The model is constructed on a series of events or more precisely a series of transactions. The amount given
out by every agent at a transaction is Az in some scaled units. It is possible that one agent could be visited by
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many agents. Supposing that one adopts the following notation: NV is the total number of agents, M is the total
amount of money involved and n,(t) is the expected number of agents with money = and time ¢.

In this case we have the following events for a particular time ¢

E,, = .NOT.{xagentvisited only by onenon — zero agent}
En,.n. = {(z+ Ax)agentvisited only by zeronon — zero agent}
E,. .., = {(z— Az)agentvisited only by twonon — zero agent}

E., ,.. = {(xz—2Ax)agentvisited only by three non — zero agent}
E,., = {Azagentvisitedonlyby Ai non — zero agent}
x
E,, = {zeroagentvisited only by Ai non — zero agent} (46)
T

The increase in expected number of x-agents are then
ng(t + At) —ny(t) = —n P(En,) + NoyacP(En, n,) + -+ nazP(Eny, ) + noP(En,) (47)

where P, = P(an agent visited by k non-zero agent) is the probability associated with the respective events.
X.S. Liang and T. Carter? have chosen to use a binomial distribution

_ C]’%_n _1qk(1 - q)N’”O*I’k fork< N —ng—1
Pr = { 0 ’ otherwise. (48)
where ¢ = 1/(N — 1). Then the probabilities in Eq. (47) can be evaluated as
PE,) = 1-P,
P(Enz+Az) = P07
P(En‘thI) = P27
P(Ena:—QAa:) = DB,
P(E’ﬂo) = Px/Az (49)
It implies that Eq. (47) may be rewritten as
z/Ax
ng(t + At) —ng(t) = —ng + Z Nyt (1—k) Az Pk | +10Py/ Az (50)

k=0

Normalizing n, with the total number of agents N, they obtain the probability assigned to money x. The
coefficients of each probability are the probability density functions (pdf). Hence, the equation governing the
evolution of the pdf of money z at time ¢ is defined as

z/Ax
flat+At)= > f(z+ (1 —k)Az,t)Pe + f(0,£)Py/as, giventhat x € [0,M]. (51)
k=0

In this formulation the total number of agents N and the total number money M are preserved. In terms of f,
the following two conservation laws as expressed as

M
/ f(z,t)dez = 1 conservationofN, (52)
0

M M
/ fz,t)de = ~ conservation of M. (53)
0
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The probability space of Eq. (51) is not the whole real line. Therefore the boundary conditions need to be set
for z = 0 and z = M. If we follow the arguments in Ref.,2? the left boundary condition is set to

f(0,t 4+ At) = [f(0,t) + f(0z,t)] exp(—1 + f(0,t)Ax), (54)

and at the right boundary « = M, f can only have two choices: 1/NAz and 0. The former is unstable as one
transaction will revoke the membership of the M—agent. Hence it is set as f(M,t) = 0.

In the asymptotic region Eq. (51) may be simplified to an advection—diffusion equation. In general the system
takes a long time to reach equilibrium, or its steady distribution. If by any chance, the money distribution is
away from the origin, the advection halts and the solution of f adopts a form of Gaussian. Gaussian dominates
the pdf evolution before it hits the left boundary. The evolution of the system starts as a Gaussian distribution
and when the tail of the Gaussian hits the left boundary at x = 0, then the whole structure starts to drift
leftwards and gives itself away to other structures.

In this model it can be shown that the steady state or equilibrium solution is the same as the Boltzmann
solution obtained from the maximal entropy principle.?? This condition does not hold near the origin. To learn
more about the steady state probability distribution near the origin one need to use the boundary conditions.
It is found that the numbers of zero agents and Ax agent take a finite value and do not follow the Boltzmann
distribution in that region.

A numerical simulation of Eq. (51), using Monte Carlo, shows that the evolution of the system first resembles
to a Gaussian like shape centered at a fixed value. This states last for a considerable amount of time, even after
it hits the left boundary. The system then evolves towards an exponential similar to a Boltzmann distribution
(or an exponential decay).

5. CONCLUSION

In this short review we introduced the idea of using path integrals to further explore the fluctuations in financial
markets. We also gave a brief description of the Black—Scholes equation for idealized markets. This review is
intended to be an introduction to econoenginnering and will be used in our future work.

APPENDIX A. ITO’S LEMMA

The price of a stock option is a function of the underlying stock’s price Y (¢) and time ¢. More generally, we can
say that the price of any derivative security is a function G, of the stochastic variables underlying the derivative
security and time. In 1951 a mathematician called Ito, discovered an important result, known as Ito’s Lemma.'”

If we consider a continuous and differentiable function G of a variable z, i.e., G(z), and if Az is a small
change in x which leads to AG, a small change in G, then it is well known that,

AG = Z—GAQC +O(Az?) (55)

i.e., AG is approximately equal to the rate of change of G with respect to the variable x times Axz. More precisely
a Taylor expansion of AG will tell us that

G d2G o ldG .

In the case G is a continuous differentiable function of two variables, G(z,y),

G (z,y)
ox

G (z,y)

AG(z,y) = Az + Ay + O(AacQ, AyQ) (57)

which means that the Taylor expansion of AG is then

8G oG 182G %G 82G 9
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In the limit of Az, Ay — 0, Eq. (58) becomes

oG oG

A derivative security is a function of a variable that follows a stochastic process. Supposing that a variable x
follows the general Ito process’

dx = a(x,t) dt + b(z,t) dW, (60)
and that G is also a function of z and ¢. Hence from Eq. (58),

oG oG 10°G , , ©°G 10°G  ,

A Wiener process is a particular type of Markov stochastic process. The behavior of a variable W which follows
a Wiener process can be understood by considering the changes in its value in small intervals of time ¢. If we
consider a small interval of time of length At and if we define AW as the change in W during At, then there
are two basic properties of AW

Property 1. AW is related to At by the equation AW = ev/ At, where € is a random sample from a standardized
normal distribution (mean of AW = 0, standard deviation of AW = v/At, and the variance of AW = At).

Property 2.The values of AW for any two different short intervals of time At are independent (This implies
that W follows a Markov process).

Now because an Ito process is a generalized version of the Wiener process, properties 1. and 2. also holds
for an Tto process. Hence a discretized version of Eq. (60) takes the form

Az = a(x,t) At + bz, t) eV At, (62)
which implies that
Az = €2b*(z,t) At + higher order terms in At. (63)

This shows that the term involving Az? in Eq. (61) has components that is of order At and cannot be ignored,
unlike with Eq. (58) when the limit Az, Ay — 0 was taken to obtain Eq. (59).

The variance of a standardized normal distribution is 1, this means that
E(e) - [E(e)) =1 (64)

where F is the expectation value. Since E(e) = 0, it follows that E(e?) = 1. The expected value of e2At is
therefore At. It can be shown that the variance of €2At is of the order of At, and that as a results of this, e2At
becomes non—stochastic and equals to its expected value of At as At — 0. Hence taking the limit as Az, At — 0
in Eq. (61) together with Eq. (63) we therefore obtain

G . G . 18°G

This is known as the Ito Lemma. Now substituting for dz from Eq. (60), Eq. (65) becomes

oG oG . 19%°G ,
dG = " [a(z,t) dt + b(x,t) dW] + Edt + 2922 bodt
oG oG 10°G , oG
dG = (Ea(x’t) + E + 5@(1 ) dt + %b(*%t) dw. (66)

TA Tto process is a generalized Wiener process dz = adt + bdW where the parameters a and b are functions of the
underlying variable z and time ¢.
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