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ABSTRACT

Wirelessly interrogated bio-MEMS devices are becoming more popular due to many challenges, such as improving
the diagnosis, monitoring, and patient wellbeing. The authors present here a passive, low power and small area
device, which can be interrogated wirelessly using a uniquely coded signal for a secure and reliable operation.
The proposed new approach relies on converting the interrogating coded signal to surface acoustic wave that is
then correlated with an embedded code. The suggested method is implemented to operate a micropump, which
consist of a specially designed corrugated microdiaphragm to modulate the fluid flow in microchannels. Finite
Element Analysis of the micropump operation is presented and a performance was analysed. Design parameters
of the diaphragm design were finetuned for optimal performance and different polymer based materials were used
in various parts of the micropump to allow for better flexibility and high reliability.
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1. INTRODUCTION

Bio-MEMS (Micro Electro Mechanical Systems) devices are increasingly been developed for drug delivery and
biomedical related applications. Conventional drug delivery methods such as oral tablets or injections are not
effective to deliver the drug effectively within their therapeutic range as there is a sharp initial increase in drug
concentration, followed by a fast decrease to a level below the therapeutic range.1 In general, it is known that
most of the drugs are effective if delivered within a specific range of concentration between the maximum and
minimum desired levels. Above the maximum range, the drugs are toxic and below that range, they have no
therapeutic effectiveness.2 In applications that require high precision in delivering drugs or any other fluid,
micropumps are a desired component of Bio-MEMS and microfluidic devices.3

1.1 Microfluidic devices and Micropumps

Vast variety of micropumps are being designed and developed by various researchers in the past.3,4 However,
for micropumps that are targeted for use as in-vivo applications, wireless and batteryless operation is highly
desired. In these low-powered micropumps, the functionality of the diaphragm and the flow resistant modules
are equally important since these components determine the fluid flow characteristics of the device. Additionally,
microdimensions and material properties are of great importance in the design of such a diaphragm in order to
achieve the optimal performance.
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1.2 Microdiaphragms for flow modulation

The structure of the diaphragm may be flat or corrugated depending on the intended application. Flat di-
aphragms are used for most of the sensing related applications. However for applications where large displace-
ments are desired, corrugated diaphragm structures are ideally suited.5 A corrugated diaphragm is made by
forming concentric beads or corrugations on a thin sheet of metal (or a similar material). As a result, diaphragm
increases in rigidity and becomes suitable for operation at larger displacements and longer linear travel than a
flat diaphragm.6

1.3 Diffuser Elements for flow rectification

Generally, valveless micropumps are considered very attractive as they are low cost devices due to their simple
structure. Interestingly, different diffuser geometries such as conical, pyramidal and flat-walled diffusers have
been widely used for valveless micropumps. The choice of diffuser shape is basically dependent on the fabrication
process. For planar lithography and standard micromachining fabrication techniques, flat-walled diffusers (planar
diffusers) are considered to be the best choice.7 The planar configuration of these flat-walled diffusers widens the
spectrum of possible materials and pump driver designs. Moreover, the increasing use of plastics and polymer
materials are foreseeable because of its low cost and good bio-compatibility and chemical resistance. Another
potential advantage of the flat-walled diffuser is that, under the same inlet boundary-layer condition, the best flat-
walled diffuser is comparatively shorter than the best conical design, which helps to reduce the device dimensions.
Therefore, in designs where the available space is a critical design parameter, the flat-walled diffuser can be used
for better performance.7

The designed micropump consists of two nozzle-diffuser elements that are connected through a pumping
chamber which consists of an electrostatically actuated conductive diaphragm. When activated, the diaphragm
periodically increases and decreases the volume of the pumping chamber. By changing the orientation of the
diffuser elements such that the wide end of one is attached to the chamber on one side and the narrow end of
the other is attached to the opposite side, a net pumping action across the chamber occurs (Figure 1) as the
diaphragm vibrates up and down with a predefined frequency.

Figure 1. Illustration of the flow rectification phenomena in a valveless/diffuser micropump while the micropump is in
supply mode (expansion mode) and pump mode (contraction mode). Here, thicker arrows imply a higher volume flow
rate.

In this paper, to analyse the behaviour of the micropump components, Finite Element Analysis (FEA) tools
are used instead of complex numerical analysis methods. Next section briefly introduces the underlying novel
actuation mechanism for such a micropump device and is followed by Section 2, which highlights the significance
of FEA approach in this research. Sections 3 and 4 present theoretical overviews, design and simulation results
for microdiaphragm and diffuser element analysis.
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1.4 SAW Device Based Wireless and Secure Operation

The wireless operation is integrated to the novel micropump design with the use of a SAW (Surface Acoustic
Wave) device. A secure code is embedded in to the output IDT (Inter Digital Transducer) of the SAW device
for a secure operation of the the micropump. As depicted in Figure 2, the conductive diaphragm is placed on
top of the output IDT of the SAW device and it is actuated electrostatically due to the generated electrostatic
force between the conductive diaphragm and the output IDT.8,9

Figure 2. Side view: Air-gap separated diaphragm is placed above the output IDT of the SAW device. Top view: The
area of the diaphragm is larger than the effective area of the output IDT, hence allows more deflection as the stress levels
at the central area of the diaphragm is less.

2. SIGNIFICANCE IN FINITE ELEMENT ANALYSIS (FEA)

Governing equation of the transverse deflection for the microdiaphragm can be expressed as:10,11

D∇4WD + ρDtD
∂2WD

∂t2
= F − P, (1)

where the bending stiffness D = EtD
3

[12(1−ν2)] , E is the modulus of elasticity, tD is the diaphragm thickness and
ν is the Poisson ratio of the diaphragm material. Moreover, WD is the deflection in the pump diaphragm, ρD

is the density of the diaphragm material and ∇4 is the two dimensional double Laplacian operator. Here, F is
the actuating electrostatic force acting on the diaphragm as shown later in Equation 2, while P is the dynamic
pressure imposed on the diaphragm by the fluid as shown in Equation 3.

In SAW based electrostatic actuation, the generated electrostatic force at the conductive diaphragm is a
function of the instantaneous displacement of the diaphragm. In other words, since the applied electrostatic force
is a function of both electric potential at the output IDT and the instantaneous gap between the diaphragm and
the SAW device, the applied force F given in Equation 1 is subject to the time varying diaphragm displacement
WD. In electrostatic actuation, the electrostatic attraction force F applied on the conductive plates can be
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described using the parallel plate capacitor effect2 as

F =
εAΦ2

2y2
, (2)

where ε is the dielectric coefficient of the medium between the plates, A is the effective plate area, y is the plate
spacing, which is defined as (h−WD) in x3 direction and Φ is the applied electric potential between the plates.

As was previously reported, in the SAW based micropump, the electrostatic force is generated due to the
time varying electric potential at the output IDT and the conductive diaphragm.9,12,13 Additionally it has been
shown that the electric potential at the output IDT region is a combination of both the electric potential at
the IDT and the electric potential at the IDT finger gaps,9,12 which results in a time and space dependant
electrostatic force with high complexity.

In electrostatically actuated micropumps, the fluid flow is considered to be incompressible. Therefore the
governing equations for fluid flow can be written as

ρL
dV

dt
= ρLg + μ∇2V −∇P, (3)

∂ρL

∂t
+ (V ·∇)ρL = 0, (4)

where V is the fluid velocity vector, μ is the viscosity, ρL is the density and P is the dynamic pressure of the fluid.
The above governing equations show that the electrostatic field between the output IDT and the diaphragm, the
deflection of the diaphragm and the flow of the working fluid are always coupled during the pumping action in
a electrostatically actuated valveless micropump. In order to determine the deflection of the diaphragm due to
excitation force, we have to solve the Equations 1, 2 and 3 simultaneously.

However this analytical approach is quite complicated and requires extensive computational effort. Because
of the complexity in analysis of electrostatic micropump, which involves electrostatic, structural and fluid field
couplings in a complicated geometrical arrangement, FEA can be considered to be a sensible approach rather
than an analytical system, to study the behaviour of the electrostatic micropump. Hence in this research, the
FEA of microdiaphragm and diffuser design are presented and discussed with the used of the ANSYS simulation
tools.14

3. DIAPHRAGM DESIGN

Diaphragms can be operated either as a single element or for higher sensitivity as a capsule, having two di-
aphragms facing one another. Similar logic is applicable when diaphragms are used as fluid flow modulators for
micropumps, since higher displacements are achievable from the capsule like designs.

In this specific design, more displacement is achieved by reducing h, which is the allowable gap between the
diaphragm and the SAW device (see Figure 2), as the electrostatic force is inversely proportionated to the gap
between the electrodes. As depicted in Figure 2, a diaphragm with a larger area results in producing higher
displacements around the central region of the diaphragm. However, the dimensions of the diaphragm should be
not too large, to avoid overlapping with the input IDT.

3.1 Sinusoidal and Toroidal Corrugated Diaphragm Design

It has been suggested that the shape of the corrugation profile has little affect on the performance characteristics
of the diaphragm.6 In general, diaphragms with fine sawtooth profiles are simple to manufacture and are
stable at small overloads. However, manufacture of diaphragms with deep sawtooth profiles is comparatively
difficult due to the possibility of cracks developing at crests as a result of stress concentration. Whereas, the
fabrication of diaphragms having sinusoidal and similar shaped corrugations needs more complex tools. However,
such corrugation profiles consist of minimal stress concentrations compared to sawtooth and trapezoidal profiles.
Additionally, toroidal corrugations could be fabricated easily, compared to the sinusoidal corrugations. Therefore,
to determine the suitability of a corrugation profile, performance analysis for sinusoidal and toroidal profiles are
conducted using ANSYS and presented in the next section.

Proc. of SPIE Vol. 7270  727004-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/13/2012 Terms of Use: http://spiedl.org/terms



ft

Sinusoidal

Toroidal

H

1

Figure 3. Sinusoidal and Toroidal corrugation profiles and corrugation parameters. Here, L denotes the corrugation
wavelength and H is the corrugation height.

The parameters L and H are considered to be critical parameters in the design of the sinusoidal and toroidal
corrugations as depicted in Figure 3. The ratios H/tD, and L/H need to be carefully considered to reduce the
unnecessary stress concentrations around the corrugations.6

3.2 Finite Element Analysis of Diaphragms

Three different scenarios are considered at the simulation level in order to compare the displacement character-
istics of square shaped diaphragms, (a) a diaphragm with no corrugations (a flat diaphragm), (b) a sinusoidal
corrugated diaphragm, and (c) a toroidal corrugated diaphragm. Material properties and both the electrical and
mechanical boundary conditions are kept the same for all the designs, while changing only the geometry with
aforementioned corrugation profiles. As it can be seen from Figure 4, the symmetry condition is exploited in order

Figure 4. Finite Element Analysis (FEA) of electrostatically actuated, corrugated diaphragm design with toroidal (left)
and sinusoidal (right) profiles. Quarter-symmetry is exploited to reduce the simulation time and CPU usage. Here, 10
wavelengths (10×L) of corrugations are used for the analysis. Dimensions of the quarter-diaphragm segment considered
are 1000 μm × 4 μm × 1000 μm (Length/2 × Thickness × Width/2).

to reduce the simulation time, while achieving a complete set of results. For the three scenarios above, quarter-
symmetry is used, which means only a quarter of the design is simulated, since the square shaped diaphragm
has two axes of symmetry. Displacements obtained for the above three scenarios for different input voltages are
presented in Figure 5. As expected, quadratic shaped curves are observed since the relationship between the
applied voltage and the displacement of the diaphragm is quadratic in nature, when the diaphragm is actuated
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Figure 5. Comparison of displacement achieved for different corrugated diaphragms.

electrostatically.9,15 Based on the FEA results, it is evident that a diaphragm with sinusoidal corrugations
provides more deflection compared to a diaphragm with a toroidal corrugations for the same excitation voltage,
and both types of diaphragms deflects more than a flat diaphragm. Hence the implementation of the sinusoidal
corrugations is highly desired from the design perspective. Moreover, sinusoidal corrugations are recommended
over toroidal corrugations, due to less stress concentration around the corrugations during the vibration of the
diaphragm. However, as mentioned before the fabrication of the toroidal corrugations might turn out to be easier
compared to sinusoidal corrugations hence the choice of the corrugation type becomes a trade off between the
performance and the low cost fabrication.

4. DIFFUSER DESIGN

By definition, a diffuser element is a device for reducing the velocity and increasing the static pressure of a fluid
passing through a system.16 In view of the ease of integrating with other MEMS devices, flat-walled (planar)
diffuser/nozzle elements can be employed, which has the features of square cross-section, two parallel flat walls,
and two convergent flat walls. The schematic diagram (top view) of the diffuser/nozzle element is shown in
Figure 6. The main geometrical parameters of the diffuser/nozzle element involve the diverging diffuser angle θ,
the diffuser length L1 and the neck width W1. The flow rectification ability of the valveless micropump depends
on the difference between the pressure loss in the diffuser and the nozzle directions.10

In the literature, several steady-flow measurements on flat-walled diffusers for micropump applications have
been reported.7 However, the experimental data are hard to be used to optimize the diffuser design for several
reasons.

(i) The range of the diverging angles of the tested diffusers is very limited; the selection of the tested angles
was based on the results of high Reynolds number flows and, therefore, was almost in a range of small values,

(ii) The slenderness and the inlet aspect ratio of the reported diffusers are very scattered. Additionally, it has
been shown that both parameters have prominent effects on the performance of the diffuser micropump.7,10,16

(iii) In most experiments, the reported pressure loss was not contributed only by the diffuser but also by
other components (such as inlet and outlet channels, sudden expansion and contraction, bends) which were not
clearly described. Therefore, the reported data represent the total pressure loss of all the components instead of
the pressure loss due to the diffuser valve solely.7

Due to these reasons it is important to follow a consistent design approach to analyse the diffuser elements
to prevent any misinterpretation of results and findings.
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Figure 6. Top view of a flat-walled diffuser element and diffuser design parameters.

4.1 Theoretical analysis of diffuser design
It is known that the performance of a valveless micropump depends on the properties of the diffuser/nozzle
elements. Hence it is important to analyse the effect of diffuser geometry in micropump operation. The pressure
loss coefficient through the diffuser/nozzle elements is defined as10

K =
ΔP

ρLυL
2/2

, (5)

where ΔP is the pressure drop across the diffuser direction or the nozzle direction, ρL is the fluid density, and υL

is the mean flow velocity of the fluid flow at the inlet of the diffuser element. The pressure loss coefficient across
the diffuser/nozzle elements is the sum of the pressure drops through the three parts, (i) the sudden contractions
at the entrance, (ii) the sudden expansions at the exit, and (iii) the gradual expansions or contractions along
the length of the diffuser element. Hence, the pressure loss coefficients across the diffuser direction (Kd) and the
nozzle direction (Kn) are expressed as

Kd = Kd,en + Kd,l + Kd,ex

(
A1

A2

)2

, (6)

Kn = Kn,ex + (Kn,l + Kn,en)
(

A1

A2

)2

, (7)

where A1 and A2 are respectively the narrowest and the largest areas of the diffuser/nozzle element as can be
seen in Figure 6. It should be noted that the continuity theory in fluid mechanics (flow rate =A1υ1 = A2υ2) has
been used in deriving Kd and Kn.

The diffuser efficiency of the diffuser/nozzle elements is defined as the ratio of the pressure loss coefficient
across the nozzle direction to that in the diffuser direction;

η =
Kn

Kd
. (8)

If the pressure loss coefficient in the nozzle direction is higher than that in the diffuser direction, that is if η >1,
a pumping action from the inlet to the outlet is caused. In contrast, η <1 will lead to a pumping action from
the outlet to the inlet (inverted). Therefore some care is needed while designing the diffuser elements in order to
achieve the expected outcomes. Moreover, once the diffuser efficiency is known, the flow rectification efficiency
of the valveless micropump can be expressed as

ε =

∣∣η1/2 − 1
∣∣

η1/2 + 1
. (9)
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Based on the above presented expressions, it is evident that the flow rectification effect of the device depends on
the diffuser geometry. Additionally, dimensional analysis of a flat-walled diffuser shows that, for incompressible
flow, the performance of the diffuser depends mainly upon Reynolds number, inlet boundary-layer blockage factor
(the ratio of the effective area displaced by the inlet boundary layer to the diffuser inlet area), aspect ratio, and
two of the three (dependent) geometrical parameters, namely the diverging angle, the slenderness, and the area
ratio.7

The boundary-layer blockage factor at A1 (refer Figure 6) depends on the relative length of the upstream
duct and has significant effects on the performance of the diffuser.7 It has also been shown that the velocity
distribution at the diffuser exit A2 is always non-uniform and the downstream duct provides a settling passage
in which the kinetic energy in the distorted outflow is converted to a static pressure rise due to turbulent mixing.
Therefore, at high Reynolds number, the loss for the diffuser with an outlet duct is smaller than that for the
same diffuser with a free discharge and the location of Ae should be chosen in such a way that the static pressure
at the exit Pe achieves a maximum.7 Therefore care is taken in defining the distance between Ai and A1 (also
A2 and Ae) during the FEA of the diffusers by selecting an appropriate ratio between these distances and the
diffuser length.

4.2 Finite Element Analysis of flat-walled diffusers

Flat-walled diffuser elements were designed and analysed using ANSYS CFD (Computational Fluid Dynamics)
tools.14 For simplicity, two dimensional models were analysed for different flat-walled diffuser geometries, by
varying the parameters, θ, L1 and W1. A laminar flow analysis is carried out by setting the fluid velocity
at the diffuser walls to zero (V x = 0 and V y = 0). Considering the values used in the published literature, a
pressure gradient (0 – 100 kPa) is set across the diffuser by setting inlet and outlet pressure boundary conditions.
Properties of water is considered for the fluid filled in the diffusers.

Figure 7. Flow patterns (left) and pressure distribution (right) for a two-dimensional model of a flat-walled diffuser
element. Diffuser length L1 = 1000 μm, neck width W1 = 80 μm and the diverging angle θ = 10 degrees.

Figure 7 shows the resulting contour plots of the velocity and pressure distribution across the diffuser element.
The velocity around the inlet is larger compared to the other parts of the diffuser and the since this depicts the
diffuser effect, the pressure is higher around the inlet compared to the exit of the diffuser.

Based on the 3D plot shown in Figure 8 (Left), it is apparent that the inlet velocity is larger around the
center area of the inlet and also velocity increases as the pressure drop is increased.

The variation of the inlet velocity for different neck widths W1 is analysed for different pressure drops and
the results are presented in Figure 8 (Right). According to the analysis, as the neck width increases from 40 μm
to 100 μm, the inlet velocity increases for respective pressure drops. Therefore for higher flow rates, larger neck
widths are desired.
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Figure 8. Left: Inlet velocity variation for different pressure drops across the inlet neck width W1. Right: Inlet velocity
variation for different pressure drops across the diffuser for different diffuser neck widths.

In order to verify the effect of diverging angle on the flow rate, the variation of the inlet velocity for different
diffuser angles θ is analysed for different pressure drops and the results are shown in Figure 9 (Left). Here, as the
diffuser angle increases from 7.5 degrees to 15 degrees, the inlet velocity increases for respective pressure drops.

Finally, the variation of the inlet velocity for different diffuser lengths L1 is analysed in ANSYS for different
pressure drops and the results are shown in Figure 9 (Right). As the diffuser length increases from 500 μm
to 1250 μm, the inlet velocity decreases for respective pressure drops. Therefore for higher flow rates, shorter
diffusers are desired. Based on these FEA results the optimal diffuser parameters can be selected to facilitate
optimal operational conditions for flow rectification. However, the effect of the Reynolds number on the fluid
flow is also need to be considered, to have a laminar flow instead of a turbulent flow, which would strongly
depend on the specific application.

Figure 9. Left: Inlet velocity variation for different pressure drops across the diffuser for different diffuser angles. Right:
Inlet velocity variation for different pressure drops across the diffuser for different diffuser lengths.

5. CONCLUSION

FEA of microdiaphragms and flat-walled diffuser elements for microfluidic devices is presented in this paper.
Theoretical analysis are presented to highlight the importance in FEA to simulate and analyse complex scenarios,
as an alternative option to numerical analysis. The effects of different corrugation profiles for diaphragms are
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illustrated and different scenarios are analysed to highlight that corrugated diaphragms achieve higher displace-
ment over flat diaphragms for the same electrostatic field. Moreover, the effectiveness of the flat-walled diffusers
are highlighted. It is demonstrated that there are several factors which directly contribute in achieving better
performance of the diffuser elements for flow rectification.

The results of this research leads to the identification of important areas for further improvement of the
diaphragm performance as well as the diffuser operation, hence the micropump performance under low-power
conditions for Bio-MEMS related applications. With the use of multiple code coupling method in ANYS Multi-
Field Solver (MFX) combined with ANSYS-CFX, a complete electrostatic-structure-fluid interaction problem
can be developed and simulated to optimise the design parameters of the desired micropump.
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