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ABSTRACT

Pulsed terahertz (T-ray) imaging systems represent an extremely promising method of obtaining sub-millimetre
spectroscopic measurements for a wide range of applications. This paper investigates a number of techniques for
optimally processing terahertz data. Speci�cally we consider wavelet de-noising andWiener deconvolution algorithms.

A goal of this research is the design and implementation of a high speed, compact and portable T-ray imaging
system. This system will draw heavily on MOEMS technology. A signi�cant challenge in the development of such a
system is the development of eÆcient software algorithms to perform signal recognition and imaging operations in
real time. This paper takes the example application of a smart bio-sensor for surface tumours and investigates the
signal processing techniques amenable to the tasks of eÆciently de-convolving the system response, de-noising and
extracting the salient features from the terahertz response waveform.
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1. INTRODUCTION

Signal processing for pulsed terahertz systems is a relatively unexplored �eld that promises to make a signi�cant
contribution to the speed and accuracy of modern T-ray systems. This paper explores a number of di�erent signal
processing methods applied to the data recorded from an all optical terahertz pulse imaging system. The di�erent
approaches are compared both theoretically and practically and their relative bene�ts discussed.

Terahertz radiation has a number of unique characteristics, which give rise to a large number of potential appli-
cations in very diverse �elds. Non-polar, dry substances, such as cardboard and plastics, are transparent to terahertz
radiation; T-rays can therefore be used for integrated circuit and packaging inspection and quality control.1 Water
and other polar liquids absorb strongly, thus opening applications in moisture analysis.2 Many molecules have
characteristic rotational spectra in the terahertz regime and T-ray systems have been used for gas sensing and anal-
ysis.3 Terahertz radiation also has signi�cant advantages for imaging applications, especially biomedical imaging.
Historically biomedical imaging has relied on visible imaging and microwave (RF) imaging. Visible imaging is limited
by Rayleigh scattering which is inversely proportional to the fourth power of the wavelength. This scattering causes
attenuation and blurring of the image.4 Microwave imaging operates at much longer wavelengths but is limited to
resolutions of the order of 1 cm. Terahertz radiation represents an ideal trade-o�. Its wavelength is long enough
to prevent drastic Rayleigh scattering yet short enough to retain �ne resolution. As an added advantage terahertz
radiation is non-ionising and thus represents a totally non-invasive diagnostic technique.5

Modern terahertz systems su�er limitations in terms of resolution, accuracy and speed. Much current research is
focussed on overcoming these obstacles by improving the system hardware. This paper describes research aiming to
address these issues from a di�erent perspective - through the use of digital signal processing.

There are several sources of noise in terahertz systems, due to both systematic and random errors. One method
to reduce errors due to noise is to average subsequent measurements for the same sample, however this drastically
increases the time required to perform the measurement. Signal processing potentially o�ers an improved solution
to the noise problem.

Wavelets are a critical interest in this research as they possess a range of extremely attractive properties for this
application. This paper includes an evaluation of the quality of wavelet de-noising of terahertz waveforms and a
comparison of the di�erent wavelet bases with respect to the bio-sensor application.
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Another signi�cant source of errors and ambiguity in terahertz systems is the system hardware itself. The
signal obtained for a sample is a result of the far-infrared properties of the sample (which are of critical interest)
and the properties and non-idealities of the system itself, these include electrical and optical re
ections for system
components and numerous other e�ects.6 In order to accurately analyse the results it is vital that the sample
signal characteristics be isolated from the system characteristics. This is generally performed by the process of
deconvolution. The standard deconvolution process is extremely sensitive to noise and can result in considerable
errors when noise is present. Improved methods of deconvolution which can optimally deconvolve a noisy signal are
a major subject of this paper.

This paper describes the software algorithms under development for a T-ray imaging system. Section 2 provides
an overview of the hardware, the sources and characteristics of noise in the system and the current state of the art
in signal processing for such systems. Section 4 de�nes the signal processing problem from a mathematical view
point to formalise the setting for the following discussion. Section 5 discusses the application of wavelet de-noising
to the problem and addresses the question of choosing an ideal wavelet family to maximise the performance of the
de-noising algorithm. Section 6 considers the problem of deconvolving the T-ray data. It presents the formulation
of an ideal �lter (in the sense of the mean square error) to deconvolve the sample response in the presence of
noise. The deconvolution problem is addressed in the frequency domain, by the means of the Wiener �lter. The
penultimate section, Section 7 gives a visual comparison of the e�ects of the processing algorithms, and �nally Section
8 summarises this work and presents an overview of the future work planned in this developing �eld.

2. MODERN T-RAY SYSTEMS

The technique of terahertz pulse imaging has been used for over 10 years7 in a wide range of applications, from
measuring optical constants of semi-conductors,8 gas sensing9 to moisture analysis2 and beyond.5 It is a powerful
technique with enormous potential. Its potential is a result of several characteristics that distinguish it from com-
peting technologies. These include the unique properties displayed by many substances in the terahertz frequency
range, the broadband nature of the emitted radiation and the coherent detection technique which allows amplitude
and phase information to be obtained.

Terahertz systems have been proposed for a number of biomedical applications including the detection of tooth
cavities,10 and burn severity diagnosis.5 One of the most potentially signi�cant biomedical applications is in the
detection of skin cancers such as malignant melanoma and basal cell carcinoma. The incidence of these cancers
continue to escalate and in the advanced stages there is no curative therapy available,11 early detection is therefore
of prime importance. Currently most dermatologists rely on a visual assessment of the patient for diagnosis. This
diagnosis is not straight-forward and results in a large number of cases being treated inappropriately or inadequately.
Hence there is considerable interest in the development of a non-invasive technique to improve clinician's diagnostic
accuracy. Recently researchers have investigated the use of white light re
ectance spectroscopy for this purpose.12

They have found signi�cant di�erences in the spectra for malignant and benign lesions which would allow automated
diagnosis. These studies have focussed on calculating metrics such as the tissue hemoglobin concentration, water
concentration and hemoglobin oxygen saturation.13 A similar system based on the principle of terahertz time-domain
spectroscopy has the potential to perform the same task with the added advantages of reduced Rayleigh scattering
and �ner frequency resolution. We present experimental results analysing biological samples with terahertz radiation.
Ideally this system will be implemented using MOEMs technology to allow a portable system to be developed and
research is being conducted in this �eld.14

It is only recently that attention has been given to improving the performance of T-ray systems through the
use of signal processing techniques. The major goal of most experiments involves the determination of the complex,
frequency-dependent refractive index of the substance under test. In the vast majority of cases this has been calculated
using the following simple procedure. The time-domain terahertz pulse is measured using the system shown in Figure
1 without a sample in place. This signal is referred to as the system response. The sample is then added to the
system and the terahertz pulse measured again. The Fourier transforms of these two signals are found and then
the ratio of the transforms yields the complex transmission coeÆcient of the sample as a function of frequency.15,16

Taking the ratio in the frequency domain performs the deconvolution of the signal and serves to isolate the sample
dependent characteristics. Subsequent processing is then application dependent. For dielectric and semiconductor
characterisation the refractive index can be derived from the transmission coeÆcients,17 whereas for gas sensing
applications the transmission frequency response is analysed to identify absorption spectra corresponding to speci�c
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molecular resonances. Signal processing techniques such as linear predictive coding (LPC) have been employed to
improve the sensitivity in gas sensing and chemical recognition applications.6,9

One of the signi�cant problems posed by the above processing is the inherent noisiness of the deconvolution
process. The simple ratio deconvolution ampli�es any high frequency noise in the signal.18 One method of countering
this problem is through the application of a pre-processing �lter. Wavelet de-noising �lters have been suggested due
to their pulse-like nature.6,19 Another approach to this problem is the Wiener �lter6 which performs system
deconvolution and also performs optimal noise cancellation in the mean-square error sense. Both of these ideas are
analysed in this paper.

Figure 1 provides a simpli�ed schematic of the hardware used for terahertz pulse imaging. This system has been
described many times in the literature,7,20,21 however, a brief overview is warranted here to identify the major
components and the potential sources of noise.

The basic system components consist of a femtosecond laser, a variable delay line, an optically gated THz
transmitter and detector and an analog to digital converter. A lock-in ampli�er (LIA) may be used to digitise the
signal. The LIA can provide a large advantage in signal to noise ratio of up to 100 times at the expense of acquisition
speed.21 Figure 2 shows the e�ect of the LIA time constant on the measurement noise.

THz 
Transmitter

THz
Detector

Femtosecond 
Laser

Scanning
 Delay Line

Sample

Current
Preamplifier

ADC and 
DSP

Figure 1. Simpli�ed hardware schematic used for terahertz time-domain spectroscopy.

There are a large number of noise sources in terahertz systems. The relative intensity of these sources varies
depending upon the particular setup and sample under test, but it is generally found that the emitter noise dominates
all other noise contributions. This noise is a result of random intensity 
uctuations in the ultrafast laser and has
been quite extensively studied.22,23 Other major sources of random error are Johnson and shot noise in the THz
detector24 as well as thermal background radiation in the THz regime. The coherent nature of T-ray systems allow
them to achieve impressive performance despite very high relative noise magnitudes. The noise is incoherent and
adds randomly for successive gating pulses while the signal is coherent and scales linearly with the number of gating
pulses.7

In addition to these random errors there are several potential systematic errors in the system. These include
parasitic re
ections of the THz beam from system components, phase errors due to delay line misalignment and
absorption and dispersion of water vapour.3

To investigate the relative bene�ts of di�erent signal processing methods a standard set of real T-ray data was
used. It consists of a 100 x 100 pixel image of an oak leaf with an insect sitting on the side of the leaf as shown
in Figure 4. The image has a spatial resolution of approximately 1 mm. For each pixel the time response of the
terahertz pulse was recorded over 12 ps (10�12s) at an e�ective sample rate of 25 terasamples/second. Examples of
these responses for each of the three distinct media (leaf, insect and free air) are shown in Figure 5.

3. DEFINITIONS AND NOTATION

The signals considered here, f(k); k 2 0::N � 1, are real-valued, �nite, discrete-time functions de�ned on R.

The inner product of two sequences f and g is written

< f; g >=
N�1X
k=0

f(k) g(k): (1)
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Figure 2. Terahertz responses of an Australian $100
note obtained with di�erent LIA time constants. (a)
was measured with a time constant of 100 ms. (b)
was measured with a time constant of 1 ms. The pixel
shown corresponds to the ink of the 0 digit in the upper
right corner of the note.

Figure 3. Standard optical image of an Australian
$100 note.
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Figure 4. Raw image of an insect on an oak leaf
obtained by terahertz time-domain spectroscopy. The
image is produced by taking the Fourier transform of
the response for each pixel and plotting the maximum
of the Fourier coeÆcients.
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Figure 5. Sampled terahertz pulses after transmission
through various substances: (a) air, (b) oak leaf, and
(c) an insect.
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The dyadic, discrete wavelet transform of a sequence f with respect to the mother wavelet  is given by

di =W f(m;n) =
1p
2m

N�1X
k=0

f(k)  

�
k � n2m

2m

�
; (2)

= hf;  m;ni :

The Fourier transform of a sequence f(k) is denoted by F (!) and is given by

F (!) =

N�1X
k=0

f(k) e�i!k: (3)

The discrete convolution between two sequences f and g is the sequence f � g given by

(f � g)(l) =
N�1X
k=0

f(k) g(l � k): (4)

4. PROBLEM DEFINITION

We consider the problem of determining the complex, frequency-dependent transmission coeÆcients for a given
sample, whether that be a gas, a semiconductor, a leaf or human tissue. Figure 6 illustrates the system and signals
we are considering.

Let x(k) be the measured terahertz response for free air pixel, i,

x(k) = f(k) + ni(k); k = 0; :::; N � 1; (5)

where f(k) is the input signal generated by the terahertz emitter and ni(k) is Gaussian white noise.

Similarly let y(k) be the terahertz response obtained for a pixel, j, containing the sample under test

y(k) = g(k) + nj(k); k = 0; :::; N � 1; (6)

where g(k) the output of the unknown system when f(k) is applied and nj(k) is Gaussian white noise. Then we
model the response of the sample as a linear, time-invariant system:

g(k) = f(k) � h(k); (7)

y(k) = f(k) � h(k) + nj(k); (8)

= (x(k) � ni(k)) � h(k) + nj(k); (9)

where h(k) is the impulse response of the sample under test.

The goal then is to design an algorithm to optimally determine h(k) and H(!) of the sample in the mean square
error sense, given the noisy measured signals x(k) and y(k).�

5. WAVELET DE-NOISING

5.1. General Wavelet Theory

If f(k) and g(k) can be estimated from the noisy observations the problem can be simply solved from Equation 7.
Wavelet de-noising represents a promising method in this regard. The theory of the wavelet transform has existed
for many years in a number of forms. In the late 1980's St�ephane Mallat uni�ed the various theories and coined
the term: `the Wavelet Representation'.25 Since then wavelets have found application in a wide range of �elds as a
result of their attractive and eÆcient properties.

�Note that the above analysis is a simpli�cation of the problem to aid tractability. In practice the measured sample response

is determined by the non-linear responses of the sample, the THz emitter and the detector.
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Figure 6. Block diagram illustrating the elements necessary to de�ne the problem. (a) shows the cases where the
sample is not present, (b) shows the case when the sample is included.

Wavelet methods are extremely eÆcient and computationally inexpensive. The fast Discrete Wavelet Transform
(DWT) allows wavelet coeÆcients to be calculated with a computational complexity of O(N).

Wavelets have been shown to be particularly useful in the analysis of non-stationary signals and in image pro-
cessing. This is because the wavelets, which form the basis functions for the transform, are localised in both time
and frequency. This is in contrast to the Fourier transform, which uses in�nite sinusoids as the basis functions.

The time-frequency localisation of the wavelet basis functions make the wavelet transform a more eÆcient rep-
resentation of pulsed functions such as terahertz pulses. This allows for more e�ective de-noising, compression and
statistical estimation than Fourier analysis. In fact, it has been shown that wavelet bases are optimal for representing
functions containing singularities.26 The goal of the wavelet transform in our context is to allow the measured signal
to be separated into coherent structure and incoherent noise.

Wavelet shrinkage de-noising is widely used for this purpose. Donoho27 de�ned the process of soft thresholding
in the wavelet domain and proved that it was optimal in the mean square error sense. Soft thresholding is performed
via the following procedure:

1. Determine the wavelet coeÆcients, di, by taking the wavelet transform (Equation 2).

2. Calculate the threshold value, T ,
T = �

p
2 logeN (10)

where � is the noise level and N is the number of samples,

3. Threshold the wavelet coeÆcients by moving them all towards zero by the threshold amount,

di =

8<
:

di � T if di � T;

di + T if di � �T;
0 if jdij < T:

(11)

4. Perform the inverse wavelet transform to recover the time domain signal.

More advanced algorithms have been proposed for de-noising and signal analysis. These include wavelet packets,28

matching pursuits29 and many others. However, this study focuses solely on the simple de-noising procedure outlined
above.

5.2. Choosing a Wavelet Family

A large number of wavelet bases have been developed for di�erent applications. Some examples of these wavelets are
shown in Figure 7. Figure 8 shows the wavelet coeÆcients for the leaf T-ray response when decomposed using the
example wavelet bases. These wavelets each exhibit di�erent properties and the following discussion addresses the
question of determining the ideal mother wavelet for representing and de-noising the T-ray data shown in Figure 5.

The goal of wavelet de-noising is to approximate the noiseless function with as few non-zero wavelet coeÆcients
as possible. The wavelet family  should therefore be chosen to produce a maximum number of wavelet coeÆcients
that are close to zero. The main properties of the wavelet that will a�ect this are its regularity, the number of
vanishing moments and the compactness of its support.30
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Figure 7. Examples of di�erent wavelet basis func-
tions,  : (a) Daubechies (Order 12), (b) Symlet (Order
12), (c) Meyer, and (d) Haar (Daubechies order 1).
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Figure 8. Example of wavelet coeÆcients for a T-
ray response using di�erent wavelet basis functions: (a)
Daubechies order 12, (b) Symlet order 12, (c) Meyer,
and (d) Haar (Daubechies order 1).

A wavelet  has p vanishing moments ifZ +1

�1

tk (t) dt = 0 for 0 � k < p: (12)

Thus  is orthogonal to any polynomial of degree p�1. If f is regular and can be approximated over a small interval
by a Taylor polynomial of degree k and if k < p, then the wavelet is orthogonal to this polynomial and the wavelet
coeÆcients will be small for �ne scales (high-resolution), thus for smooth functions a wavelet with a higher number
of vanishing moments will represent the function with fewer large coeÆcients.

The size of support of a wavelet  refers to the range over which  has non-zero values, that is, it is a measure of
the temporal localisation of the wavelet. The wider the support of the wavelet the more large amplitude coeÆcients
are generated by peaks in the input signal f , this is a particular problem if the signal has many isolated singularities.

To reduce the number of large amplitude coeÆcients we must reduce the support size and increase the number
of vanishing moments of  . However, it can be shown30 that if  has p vanishing moments then its support is at
least 2p � 1. Therefore some trade o� must be made. Daubechies wavelets are optimal in this regard as they o�er
the minimum support for a given number of vanishing moments.31

The regularity of  has a limited e�ect on thresholding eÆciency. Its main importance is in the �eld of image
processing where irregular wavelets can result in obvious discontinuous artifacts in the processed image. Other
properties that distinguish between wavelets are their symmetry and orthogonality.

We limit this investigation to orthogonal, dyadic wavelet transforms due to the very fast algorithms available
for their calculation, however many applications such as speech processing require non-dyadic wavelet processing to
accurately represent subtle changes in scale and delay.32 Non-dyadic wavelet processing thus represents an open
area for future research.

5.3. Experimental Determination of the Optimal Wavelet

Experiments were performed to determine which wavelet family performed best in de-noising noisy T-ray data. To
do this white, Gaussian noise was added to the measured terahertz responses such that the SNR was 3 dB, the noisy
sequence was then de-noised using Daubechies, Meyer, Symlet and Coi
et wavelets of varying order. The order of
the wavelet, N, is of particular concern to this discussion as it determines both the number of vanishing moments
and the support length for the wavelet. Table 1 shows the properties of the wavelets considered here. More details
on the wavelet properties can be found in the literature.30,31
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Table 1. Comparison of the major properties of the wavelets considered in this study.

Characteristic Wavelet
Meyer Daubechies Coi
et Symlet

Regularity in�nite low, increases with N increases with N increases with N
Support Length in�nite 2N-1 6N-1 2N-1

Symmetric yes no nearly nearly
# of Vanishing Moments 0 N 2N N

Orthogonal yes yes yes yes

The quality of the de-noising process was measured based on the resultant signal to noise ratio (SNR) given by

SNR(dB) = 10 log

 PN�1
k=0 a(k)

2PN�1
k=0 [a(k)� b(k)]2

!
; (13)

where a(k) was the original terahertz signal and b(k) was the �nal signal after noise has been added and wavelet
de-noising performed.

This process was repeated over 100 times to average the results. This procedure was carried out for each of the
characteristic T-ray responses, the free air, leaf and insect responses. Table 2 provides a summary of the results.
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Figure 9. Results of wavelet de-noising the T-ray re-
sponse for a leaf. (a) shows the original response be-
fore noise was added, (b) shows the response in (a) with
noise added such that the SNR was 3 dB, (c) shows the
response in (b) after wavelet de-noising was performed
using the Coi
et order 4 wavelet.
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Figure 10. Variation in de-noised SNR vs wavelet
order N. A noisy terahertz pulse was de-noised with
Daubechies wavelets of order N. For each N the resul-
tant SNR was measured and is shown above.

The results indicated that the wavelet de-noising procedure was very successful in de-noising the terahertz pulses,
providing an improvement in SNR ranging from 5 dB up to 10 dB. A typical result of the de-noising process is shown
for the leaf terahertz response in Figure 9. All of the wavelets tested provided similar results however by averaging
the results over each wavelet family the families could be ranked in order of decreasing quality to yield: Coi
et,
Symlet, Daubechies and Meyer. For each wavelet family the variation of de-noised SNR with order was analysed. It
was found that for each family there was an ideal order, N� for which the de-noised SNR was maximised. For orders
N < N� the SNR dropped o� rapidly and for higher orders N > N� the de-noised SNR dropped o� more gradually
in a complex fashion approximating an exponential decay overlaid with an oscillatory function. An example of this
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Table 2. Experimentally determined SNR for T-ray
pulses de-noised with di�erent wavelets of varying or-
der. White noise was added to the original signals such
that the signal to noise ratio was 3 dB before the de-
noising process was applied.

Wavelet Order De-Noised SNR (dB)
Family Free Air Leaf Insect

Daubechies 1 8.4 7.9 10.1
5 11.2 11.9 13.3
10 11.6 11.0 12.1
15 10.8 10.5 10.8
20 10.4 10.4 12.1
25 9.5 8.4 11.3

Coi
et 1 10.6 10.5 11.5
2 11.7 11.4 11.4
3 12.0 11.7 11.4
4 12.5 12.1 13.3
5 12.0 12.1 12.4

Symlet 1 9.1 8.3 10.0
5 10.9 11.7 13.2
10 11.9 12.0 11.7
15 10.6 11.4 12.1
20 10.7 11.4 12.2
25 10.6 10.5 13.7

Meyer undef 11.4 11.8 13.9

Table 3. Experimentally determined ideal order for
each wavelet family.

Wavelet Ideal Order
Family Free Air Leaf Insect

Daubechies 7 8 8
Coi
et 4 5 4
Symlet 6 7 11

response is shown in Figure 10 for the Daubechies family. The ideal order for each wavelet was also found and is
shown in Table 3.

6. DECONVOLUTION

This section considers the problem of estimating the impulse and frequency response of the sample under test from
the measured data, as formulated in Section 4.

6.1. The Wiener Filter

The Wiener �lter is the classic �lter used for noise reduction.18 Given a signal s(k) corrupted by noise n(k), we
desire to �lter the resulting signal to yield y(k) as close as possible to s(k). If we assume that the signal and noise
are ergodic, random variables of known power spectral densities (PSD), and further that the noise is uncorrelated
with the signal, the optimal �lter in the sense of mean, square error is given by

Ho(!) =
Ps(!)

Ps(!) + Pn(!)
; (14)

where Ho(!) is the frequency response of the �lter, and Ps(!) and Pn(!) are the PSDs of the signal and the noise
respectively. These are estimated using the direct periodogram method33 whereby

Ps(!) =
1

N
jX(!)j2; X(!) =

N�1X
n=0

x(n)e�j!n; (15)

where N is the number of samples, x(n) is the input sequence.

The process of deconvolution involves dividing by the system frequency response. If this process is followed by a
Wiener �lter it is referred to as Wiener deconvolution. Figure 11 illustrates this process.
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s(k)

n(k)

w(k) x(k) y(k) z(k)
H0(!)F (!) 1

F (!)

G(!)

Figure 11. Block diagram illustrating the process of Wiener deconvolution. G(!) represents the Wiener deconvo-
lution �lter. It consists of a deconvolution �lter, followed by a Wiener �lter.

The transfer function of the deconvolution �lter G(!) is given by

G(!) =
Ho(!)

F (!)
=

F �(!)Ps(!)

jF (!)j2Ps(!) + Pn(!)
: (16)

6.2. Experimental Deconvolution

The Wiener �lter described above was applied to terahertz data obtained by imaging a 0.6 mm thick slice of Spanish
ham (`Jamon Serrano'). The data was obtained using the setup shown in Figure 1 using a `Hurricane' laser from
Spectral Physics, with a pulse repetition rate of 1 kHz, a pulse duration of 130 fs, a pump power of 50 mW and a
wavelength of 800 nm. Two pixels were considered, one was an area with a high concentration of fat, the other was a
meaty area with a low fat concentration, the frequency spectra for these two samples are shown in Figure 12. Wiener
deconvolution was applied to each of these samples, for this purpose the Fourier transform of the free air T-ray pulse
x(k) was used as F (!), the sample T-ray response y(k) was used to determine Ps(!) and Gaussian white noise was
added to both sequences such that the SNR of each sequence was 3dB. This was done to illustrate the performance
of the �lter in the presence of a large amount of noise.
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Figure 12. Frequency spectrum of the responses for
two pixels on a piece of Spanish ham (`Jamon Serrano').
(a) shows a fatty area, while (b) shows a meaty area.
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Figure 13. Frequency spectrum of ham T-ray pulses
after Wiener deconvolution. (a) shows the fatty pixel,
and (b) shows the meat pixel.

Wiener deconvolution has been illustrated previously for gas responses,6 the response of simple gas mixtures to
terahertz radiation is relatively simple and can be accurately predicted, however the responses shown here are much
more complicated as the response of biological samples is a combination of the molecular rotational absorption spectra
and scattering for many di�erent molecules. The data shown here is representative of the problem encountered when
analysing human tissue.
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Figure 13 shows the results of Wiener deconvolution applied to the ham responses. It can be seen that the fat is
relatively transparent to terahertz radiation so the deconvolved response is quite 
at (up to 3 THz) whilst the meat
has a complex terahertz response, deconvolution therefore makes the task of distinguishing between the two samples
easier. It remains to develop classi�cation metrics to allow the bene�ts of this method to be further analysed.

7. COMPARISON OF TECHNIQUES
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Figure 14. A comparison of T-ray images before and after various processing stages. (a) represents the original
noiseless image (b) shows the same image after noise was added. (c) shows the noisy image after wavelet de-noising,
(d) shows the noisy image after Wiener deconvolution and (e) shows the noisy image after wavelet de-noising followed
by Wiener deconvolution.

To conclude this paper we give a visual comparison of the processing techniques discussed within this paper. We
consider the original image shown in Figure 4 with noise added to each response such that the SNR was 3 dB. This
is shown in Figure 14(b). The rest of the �gure shows the result of wavelet de-noising, Wiener deconvolution and the
combination of the two techniques on the image quality. The wavelet de-noising was performed using the procedure
described in Section 5 using a Coi
et wavelet of order 4. The Wiener deconvolution was performed as described
in Section 6 using the average free air pixel response as the system response. In all cases the image was produced
by taking the Fourier transform of the processed T-ray pulses and plotting the magnitude of the Fourier coeÆcient
corresponding to a frequency of 1 THz. This is an arbitrary scheme that produces good quality images. It can be
seen that wavelet de-noising provides a marked improvement in image quality whilst deconvolution appears to o�er
little, however deconvolution promises greater bene�ts when classi�cation algorithms are developed.
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Figure 15. Illustration of wavelet de-noising of genuine noisy data. (a) shows the terahertz response of an Australian
$100 note measured with a LIA time constant of 100 ms. (b) shows a noisy version of the same signal, measured
with a LIA time constant of 1 ms. (c) shows the result of wavelet de-noising applied to the signal in (b).

We also show the results of wavelet de-noising applied to the Australian $100 note measurements shown earlier.
Figure 15 shows the results of de-noising the signal measured with a small time constant (1ms) using a Coi
et order
4 wavelet. It can be seen that the noise is signi�cantly reduced, the SNR was improved from 7 dB to 8.5 dB. This
technique therefore has the potential to allow e�ective systems to be constructed without the LIA, this would reduce
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the hardware complexity and, if the slow stepper motor that typically provides the optical delay is replaced by a
scanning optical delay line, promises to dramatically increase the acquisition speed of the system. It also increases
the power of the technique in measuring samples that have higher attenuation and correspondingly higher relative
noise levels. This is of particular bene�t to bio-medical applications where the attenuation is typically high.

8. CONCLUSION

This article has investigated the performance of signal processing techniques in analysing terahertz pulses obtained
after transmission through biological samples. In particular the techniques of wavelet de-noising and Wiener decon-
volution were analysed.

Soft wavelet de-noising was found to be well suited for this application, achieving up to 10dB improvement in
SNR when applied to waveforms with initial SNRs of 3dB. An experimental investigation was performed to determine
the ideal wavelet family and order for the de-noising application. The results of this experiment are not decisive but
a number of useful conclusions were able to be drawn. Four wavelet families were compared and their performance,
although similar could be ranked in order of success to yield Coi
et, Symlet, Daubechies and Meyer ordered by
decreasing average resultant SNR. The order of wavelets within the families were also compared, where the order
determines both the number of vanishing moments and the support width of the wavelet. The ideal order for each
wavelet family was identi�ed.

Wiener �ltering was also applied to the problem of recovering the response of the sample from noisy data. The
results of this analysis and the improvement in visual quality of T-ray images were discussed.

This is a dynamic �eld of research and much work remains. In particular signal processing strategies must be
adapted to deal with 1/f noise originating from the ultrafast laser, and chirped, single shot terahertz responses.34,35

Many other signal processing techniques hold potential notably adaptive signal processing, and techniques adapted
from speech recognition applications.

Ultimately these techniques, including wavelet de-noising and Wiener deconvolution must be evaluated against
a classi�cation criterion, and algorithms must be developed to accurately classify samples based on their terahertz
responses.
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