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ABSTRACT

A protocol for considering decoherence in quantum games is presented. Results for general two-player, two-
strategy quantum games subject to decoherence are derived and some specific examples are given. Decoherence
in other types of quantum games is also considered. As expected, the advantage that a quantum player achieves
over a player restricted to classical strategies is diminished for increasing decoherence but only vanishes in the
limit of maximum decoherence when the results of the game are randomized.
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1. INTRODUCTION

Game theory has long been commonly used in economics, the social sciences and biology to model decision
making situations where the outcomes are contingent upon the interacting strategies of two or more agents
with conflicting, or at best, self-interested motives. There is now increasing interest in applying game-theoretic
techniques in physics.1 With the enthusiasm for quantum computation there has been a surge of interest in
the discipline of quantum information2 that has lead to the creation of a new field combining game theory and
quantum mechanics: quantum game theory.3 By replacing classical probabilities with quantum amplitudes and
allowing the players to employ superposition, entanglement and interference, quantum game theory produces
new ideas from classical two-player4–9 and multi-player settings.10–13 Quantum prisoners’ dilemma has been
realized on a two qubit nuclear magnetic resonance machine.14 A review of quantum games is given by Flitney
and Abbott.15

Decoherence can be defined as non-unitary dynamics resulting from the coupling of the system with the
environment. In any realistic quantum computer, interaction with the environment cannot be entirely elim-
inated. Such interaction can destroy the special features of quantum computation. Quantum computing in
the presence of noise is possible with the use of quantum error correction16 or decoherence free subspaces.17

These techniques work by encoding the logical qubits in a number of physical qubits. Quantum error correction
is successful provided the error rate is low enough, while decoherence free subspaces control certain types of
decoherence. Both have the disadvantage of expanding the number of qubits required for a calculation. With-
out such measures, noise and decoherence in quantum games needs to be considered, an area little studied.
Johnson has considered a quantum game corrupted by noisy input.18 Above a certain level of noise it was
found that the quantum effects impede the players to such an a degree that they were better off playing the
classical game. Chen et al have discussed decoherence in quantum prisoners’ dilemma.19 Decoherence was
found to have no effect on the Nash equilibrium in this model. The current work considers general quantum
games in the presence of decoherence. The paper is organized as follows. Section 2 outlines our model for
introducing decoherence into quantum games, section 3 presents some specific results from this model for two-
player, two-strategy quantum games, section 4 gives an example of decoherence in another quantum game and
section 5 presents concluding remarks.
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2. QUANTUM GAMES WITH DECOHERENCE

The process of quantizing a game with two pure strategies proceeds as follows. In the classical game the
possible actions of a player can be encoded by a bit. This is replaced by a qubit in the quantum case. The
computational basis states |0〉 and |1〉 represent the classical pure strategies, with the players’ qubits initially
prepared in the |0〉 state. The players’ moves are unitary operators, or more generally, completely positive,
trace-preserving maps, drawn from a set of strategies S, acting on their qubits. Interaction between the players’
qubits is necessary for the quantum game to give something new. Eisert et al produced interesting new features
by introducing entanglement.4 The final state of an N -player quantum game in this model is computed by

|ψf 〉 = Ĵ†(M̂1 ⊗ M̂2 ⊗ . . . ⊗ M̂N ) Ĵ |ψ0〉 , (1)

where |ψ0〉 = |00 . . . 0〉 represents the initial state of the N qubits, Ĵ (Ĵ†) is an operator that entangles (dis-
entangles) the players’ qubits, and M̂k, k = 1, . . . , N , represents the move of player k. A measurement over
the computational basis is taken on ψf and the payoffs are subsequently determined using the payoff matrix
of the classical game. The two classical pure strategies are the identity and the bit flip operator. The classical
game is made a subset of the quantum one by requiring that Ĵ commute with the direct product of N classical
moves. Games with more than two classical pure strategies are catered for by replacing the qubits by qunits
(n level quantum systems) or, equivalently, by associating with each player a number of qubits.

It is most convenient to use the density matrix notation for the state of the system and the operator
sum representation for the quantum operators. Decoherence can take many forms including dephasing, which
randomizes the relative phases of the quantum states, and dissipation, that modifies the populations of the
quantum states. Pure dephasing of a qubit can be expressed as

a|0〉 + b|1〉 → a|0〉 + b eiφ|1〉. (2)

If we assume that the phase kick φ is a random variable with a Gaussian distribution of mean zero and variance
2λ, then the density matrix obtained after averaging over all values of φ is2

(|a|2 ab̄
āb |b|2

)
→

( |a|2 ab̄ e−λ

āb e−λ |b|2
)

. (3)

Over time, the random phase kicks cause an exponential decay of the off-diagonal elements of the density
matrix.

In the operator sum representation, the act of making a measurement with probability p in the {|0〉, |1〉}
basis on a qubit ρ is

ρ →
√

1 − p Î ρ
√

1 − p Î +
1∑

j=0

Ej ρ E†
j , (4)

where E0 =
√

p|0〉〈0| and E1 =
√

p|1〉〈1|. An extension to N qubits is achieved by the addition of further Ej ’s:

ρ →
√

1 − p Î ρ
√

1 − p Î +
1∑

j1,... ,jN=0

Ej1...jN
ρ E†

j1...jN
(5)

where Ej1...jN
=

√
p|j1 . . . jN 〉〈j1 . . . jN |. This process also leads to the decay of the off-diagonal elements of ρ.

By identifying 1 − p = e−λ, the measurement process has the same results as pure dephasing.

Independently of the particular model used, a quantum game with decoherence can be described in the
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Figure 1. The flow of information in an N -person quantum game with decoherence, where Mk is the move of the kth
player and Ĵ (Ĵ†) is an entangling (dis-entangling) gate. The central horizontal lines are the players’ qubits and the
top and bottom lines are classical random bits with a probability p1 or p2, respectively, of being 1. D is some form of
decoherence controlled by the classical bits.

following manner

ρi ≡ ρ0 = |ψ0〉〈ψ0| (initial state) (6)

ρ1 = Ĵρ0Ĵ
† (entanglement)

ρ2 = D(ρ1, p1) (partial decoherence)

ρ3 = (ΠN
k=1M̂k) ρ2 (ΠN

k=1M̂k)† (players’ moves)
ρ4 = D(ρ3, p2) (partial decoherence)

ρ5 = Ĵ†ρ4Ĵ (dis-entanglement),

to produce the final state ρf ≡ ρ5 upon which a measurement is taken. The function D(ρ, p) is a completely
positive map that applies some form of decoherence to the state ρ controlled by the probability p. The products
in the expression for ρ3 are direct products. The scheme is shown in figure 1. The expectation value of the
payoff for the kth player is

〈$k〉 =
∑
α

P̂α ρf P̂ †
α $k

α, (7)

where Pα = |α〉〈α| is the projector onto the state |α〉, $k
α is the payoff to the kth player when the final state is

|α〉, and the summation is taken over α = j1j2 . . . jN , ji = 0, 1.

3. RESULTS FOR 2 × 2 QUANTUM GAMES

Let S = {Û(θ, α, β) : 0 ≤ θ ≤ π, −π ≤ α, β ≤ π} be the set of pure quantum strategies, where

Û(θ, α, β) =
(

eiα cos(θ/2) ieiβ sin(θ/2)
ie−iβ sin(θ/2) e−iα cos(θ/2)

)
(8)

is an SU(2) operator. The move of the kth player is Û(θk, αk, βk). The classical moves are Î ≡ Û(0, 0, 0) and
F̂ ≡ Û(π, 0, 0). Entanglement is achieved by

Ĵ =
1√
2
(Î⊗N + iσ⊗N

x ). (9)

Operators from the set Scl = {Û(θ, 0, 0) : 0 ≤ θ ≤ π} are equivalent to classical mixed strategies since when all
players use these strategies the quantum game reduces to the classical one. There is some arbitrariness about
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representation of the operators. Different representations will only lead to a different overall phase in the final
state and this has no physical significance.

After choosing Eq. (5) to represent the function D in Eq. (6), we are now in a position to write down the
results of decoherence in a 2 × 2 quantum game. Using the subscripts A and B to indicate the parameters of
the two traditional protagonists Alice and Bob, respectively, and writing ck ≡ cos(θk/2) and sk ≡ sin(θk/2) for
k = A,B, the expectation value of a player’s payoff is

〈$〉 =
1
2
(c2

Ac2
B + s2

As2
B)($00 + $11) +

1
2
(c2

As2
B + s2

Ac2
B)($01 + $10)

+
1
2
(1 − p1)(1 − p2){[c2

Ac2
B cos(2αA + 2αB) − s2

As2
B cos(2βA + 2βB)]($00 − $11)

+ [c2
As2

B cos(2αA − 2βB) − s2
Ac2

B cos(2αB − 2βA)]($01 − $10)}
+

1
4

sin θA sin θB [(1 − p1) sin(αA + αB − βA − βB)(−$00 + $01 + $10 − $11)

+ (1 − p2) sin(αA + αB + βA + βB)($00 + $11) + (1 − p2) sin(αA − αB + βA − βB)($10 − $01)] ,

(10)

where a superscript A or B is added to the $’s to the give the payoffs to the two protagonists. Setting p1 = p2 = 0
gives the 2× 2 quantum games studied in the literature. If in addition, αk = βk = 0, k = A,B, a 2× 2 classical
game results with the mixing between the two classical pure strategies Î and F̂ being determined by θA and
θB for Alice and Bob, respectively. Maximum decoherence with p1 = p2 = 1 gives a result where the quantum
phases αk and βk are not relevant:

〈$〉 =
x

2
($00 + $11) +

1 − x

2
($01 + $10), (11)

where x = c2
Ac2

B + s2
As2

B . However, this is not equivalent to the classical game as one might expect.

One way of measuring the “quantum-ness” of the game is to consider the known advantage of a player
having access to the full set of quantum strategies S over a player who is limited to the classical set Scl.4, 20 If
we restrict Alice to αA = βB = 0, then,

〈$〉 =
x

2
($00 + $11) +

1 − x

2
($01 + $10)

+
1
2
(1 − p1)(1 − p2)

{
c2
B cos 2αB [c2

A($00 − $11) + s2
A($10 − $01)]

− s2
B cos 2βB [c2

A($10 − $01) + s2
A($00 − $11)]

}
+

1
4

sin θA sin θB [(1 − p1) sin(αB − βB)(−$00 + $01 + $10 − $11)

+ (1 − p2)(sin(αB + βB)($00 + $01 − $10 + $11)] .

(12)

For prisoners’ dilemma, the standard payoff matrix is

Bob :
cooperation(C) defection(D)

Alice : C (3, 3) (0, 5)
D (5, 0) (1, 1)

(13)

where the numbers in parentheses represent payoffs to Alice and Bob, respectively. The classical pure strategies
are cooperation (C) and defection (D). Defecting gives a better payoff regardless of the other player’s strategy,
so it is a dominant strategy, and mutual defection is the Nash equilibrium. The well known dilemma arises
from the fact that both players would be better off with mutual cooperation, if this could be engineered. With
the payoffs of Eq. (13), the best Bob can do from Eq. (12) is to select αB = π/2 and βB = 0. Bob’s choice
of θB will depend on Alice’s choice of θA. He can do no better than θB = π/2 if he is ignorant of Alice’s
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Figure 2. Payoffs for (a) Alice and (b) Bob in quantum prisoners’ dilemma as a function of decoherence probability p
and Alice’s strategy θ (being a measure of the mixing between cooperation (C) and defection (D) with θ = 0 giving C
and θ = π giving D), when Bob plays the optimum quantum strategy and Alice is restricted to classical strategies. The
decoherence goes from the unperturbed quantum game at p = 0 to maximum decoherence at p = 1.

strategy∗. Figure 2 shows Alice and Bob’s payoffs as a function of decoherence probability p = p1 = p2 and
Alice’s strategy θ ≡ θA when Bob selects his optimal strategy.

The standard payoff matrix for the game of chicken is

Bob :
cooperation(C) defection(D)

Alice : C (3, 3) (1, 4)
D (4, 1) (0, 0)

(14)

There is no dominant strategy. Both CD and DC are Nash equilibria, with the former preferred by Bob and
the latter by Alice. Again there is a dilemma since the Pareto optimal results CC is different from both Nash
equilibria. Bob’s payoff is again optimized by αB = 0, βB = π/2 and θB = π/2. Figure 3 shows the payoffs as
a function of decoherence probability p and Alice’s strategy θ.

One form of the payoff matrix for the battle of the sexes is

Bob :
opera(O) television(T )

Alice : O (2, 1) (0, 0)
T (0, 0) (1, 2)

(15)

Here the two protagonist must decide on an evenings entertainment. Alice prefers opera (O) and Bob television
(T ), but their primary concern is that they do an activity together. In the absence of communication there
is a coordination problem. A quantum Bob maximizes his payoff in a competition with a classical Alice by
choosing αB = −π/2, βB = 0 and θB = π/2. Figure 4 shows the resulting payoffs for Alice and Bob as a
function of decoherence probability p and Alice’s strategy θ.

The optimal strategy for Alice in the three games considered is θ = π (or 0) for prisoners’ dilemma, or
θ = π/2 for chicken and the battle of the sexes. Figure 5 shows the expectation value of the payoffs to Alice and
Bob as a function of the decoherence probability p for each of the games when Alice chooses her optimal classical
strategy. In all cases considered, Bob outscores Alice and performs better than his classical Nash equilibrium
result provided p < 1.† The advantage of having access to quantum strategies decreases as p increases but

∗See Flitney and Abbott20 for details of quantum versus classical players.
†or the poorer of his two Nash equilibria in the case of chicken or the battle of the sexes
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Figure 3. Payoffs for (a) Alice and (b) Bob in quantum chicken as a function of decoherence probability p and Alice’s
strategy θ, when Bob plays the optimum quantum strategy and Alice is restricted to a classical mixed strategy.
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Figure 4. Payoffs for (a) Alice and (b) Bob in quantum battle of the sexes as a function of decoherence probability
p and Alice’s strategy θ, when Bob plays the optimum quantum strategy and Alice is restricted to a classical mixed
strategy.
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Figure 5. Payoffs as a function of decoherence probability p for (a) Alice and (b) Bob for the quantum games prisoners’
dilemma (PD), chicken (Ch) and battle of the sexes (BoS). Bob plays the optimum quantum strategy and Alice her
best classical counter strategy.

is still present for all levels of decoherence up to the maximum. At maximum decoherence (p = 1) the game
result is randomized and the expectation of the payoffs are simply the average over the four possible results.
The results presented in figures 2, 3 and 4 are comparable to the results for different levels of entanglement.20

They are also consistent with the results of Chen and co-workers19 who show that with increasing decoherence
the payoffs to both players tend to the average of the four payoffs, as is the case in the present work.

4. DECOHERENCE IN OTHER QUANTUM GAMES

A simple effect of decoherence can be seen in Meyer’s quantum penny-flip3 between P, who is restricted to
classical strategies, and Q, who has access to quantum operations. In the classical game, P places a coin heads
up in a box. First Q, then P, then Q again, have the option of (secretly) flipping the coin or leaving it unaltered,
after which the state of the coin is revealed. If the coin shows heads Q is victorious. Since the players moves
are carried out in secret they do not know the intermediate states of the coin and thus the classical game is
balanced.

In the quantum version, the coin is replaced by a qubit prepared in the |0〉 (“heads”) state. Having access
to quantum operations, Q applies the Hadamard operator to produce the superposition (|0〉 + |1〉)/√2. This
state is invariant under the transformation |0〉 ↔ |1〉 so P’s action have no effect. On his second move Q again
applies the Hadamard operator to return the qubit to |0〉. Thus Q wins with certainty against any classical
strategy by P.

Decoherence can be added to this model by applying a measurement with probability p after Q’s first move.
Applying the same operation after P’s move has the same effect since his move is either the identity or a bit-flip.
If the initial state of the coin is represented by the density matrix ρ0 = |0〉〈0| the final state can be calculated
by

ρf = ĤP̂ D̂Ĥρ0Ĥ
†D̂†P̂ †Ĥ†

=
1
4

(
4 − 2p 0

0 2p

)
,

(16)

where Ĥ is the Hadamard operator, P̂ is P’s move (Î or σx), and D̂ =
√

1 − p Î +
√

p(|0〉〈0| + |1〉〈1|) is
a measurement in the computational basis with probability p. Again, the final state is independent of P’s
move. The expectation of Q winning decreases linearly from one to 1

2 as p goes from zero to one. Maximum
decoherence produces a fair game.
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Figure 6. In a one round quantum truel with c = 0 and with decoherence, the boundaries for different values of
the decoherence probability p below which Alice maximizes her expected payoff by doing nothing and above which by
targeting Charles. There is a smooth transition from the fully quantum case (p = 0) to the classical one (p = 1). From
Flitney and Abbott.13

As an example of the effect of decoherence on another quantum game consider a game analogous to a three
player duel, or truel, between Alice, Bob and Charles.13 The classical version can be described as follows.
Each player has a bit, starting in the one state. The players move in sequence in alphabetic order. A move
consists of either doing nothing or attempting to flip an opponent’s bit with a known probability of failure of a,
b or c, for Alice, Bob and Charles, respectively. A player can do nothing if their bit is zero. The payoffs at the
completion of the game are 1/(number of bits in the one state) to a player whose bit is one, or zero otherwise.
(The connection with a truel is made by considering one to correspond to “alive” and zero to “dead”. A move
is an attempt to shoot an opponent.) In some situation the optimal strategy is counter-intuitive. It may be
beneficial for a player to do nothing rather than attempt to flip an opponent’s bit from one to zero, since if
they are successful they become the target for the third player.

The game is quantized by replacing the players’ bits by qubits and by replacing the flip operation by an
SU(2) operator of the form of Eq. (8) operating on the chosen qubit. Maintaining coherence throughout the
game removes the dynamic aspect since the players can get no information on the success of previous moves.
Decoherence can be added to the quantum game by giving a probability p of a measurement being made
after each move, and in the case of a measurement, allowing the players to choose their strategy depending
on the result of previous rounds, which are now known. Figure 6 shows the regions of the parameter space
(a, b) corresponding to Alice’s preferred strategy in a one round truel when c = 0 (i.e., when Charles is always
successful). The boundary between Alice maximizing her expected payoff by doing nothing and by targeting
Charles depends on the decoherence probability p. We see a smooth transition from the quantum case to the
classical one as p goes from zero to one. Note that the boundary in parameter space changes from linear in the
classical case to convex in the quantum case. This is of interest since convexity is being intensely studied as
the basis for Parrondo’s paradox.21

5. CONCLUSION

A method of introducing decoherence into quantum games has been presented. One measure of the “quantum-
ness” of a quantum game subject to decoherence is the advantage a quantum player has over a player restricted
to classical strategies. As expected, increasing the amount of decoherence degrades the advantage of the
quantum player. However, in the model considered, this advantage does not entirely disappear until the
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decoherence is a maximum. When this occurs in 2× 2 quantum games, the results are equally distributed over
all the possible outcomes and the players’ strategies are not relevant. The classical game is not reproduced.
The loss of advantage to the quantum player is very similar to that which occurs when the level of entanglement
between the players’ qubits is reduced.

In the example of a one-round quantum truel, increasing the level of decoherence altered the regions of
parameter space corresponding to different preferred strategies smoothly towards the classical regions. In this
quantum game, maximum decoherence produces a situation identical to the classical game.
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