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ABSTRACT

This paper reviews modulation recognition in the context of HF radio-communications. We investigate entropic
distance measures and coherence measures for recognizing HF modulations. Preliminary results shown that it
may be possible to identify a modulation and its transmit power level based on the entropic distance between it
and another modulation. Coherence estimates may provide characteristic signatures that can be used to identify
modulation types.
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1. INTRODUCTION

The HF radio band (nominally 2 MHz to 30 MHz) can be used for long-distance wireless communications
because the ionosphere and its various layers refract transmissions in this band. Such refraction enables signals
to propagate beyond the horizon to distant receivers unable to be reached by higher frequency (VHF and above)
signals. This fact makes the HF band attractive for private and commercial interests as well as for defense forces
spread across the globe. For example, spectrum management agencies monitor the HF band for unlicensed
operators and military agencies use the HF band for communications.

In the past, HF communication systems were analog. This meant that signals received by an antenna were
down-converted to baseband using filters, oscillators, and many discrete components. Receivers were generally
constructed in a super-heterodyne configuration.1 The baseband signals were then passed through demodulators
to extract the information content. Often special demodulators had to be switched in to demodulate signals
with different modulation schemes.

Today, there are many different modulation techniques. Many of these are of the family of space-time layered
signals. Some techniques include direct-sequence spread spectrum (DSSS), frequency-hopped spread spectrum
(FHSS), time-domain multiplexing (TDM), frequency-domain multiplexing (FDM), and parallel transmission of
data through multiple antennas and/or frequencies. Traditional HF monitoring, processing, and analysis cannot
easily handle these signals.

Monitoring and detection of such signals using traditional methods would require numerous HF receivers.
Monitoring and detection would also require some prior knowledge of the signals so as to choose the correct
receiver. This is a difficult task. Early computers made processing easier, but only recently has enough processing
power been available in one package to perform such tasks.

Software radio aims to replicate hardware functions in software running on a generic platform. In so doing
many of the problems associated with hardware implementations are avoided. In addition, the receiver and
transmitter chains can easily be changed to accommodate various modulation schemes. The idea is to digitize
the incoming radio-frequency (RF) signal directly and then to perform down-conversion and demodulation in
digital hardware. High resolution Analog-to-Digital Converters (ADCs) and Digital Down-Converters (DDCs)
are now available for operation at sampling rates in the 100 MHz range. These sampling rates allow for direct
digitization of RF signals up to around 50 MHz.
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This paper continues the work presented in a critical review of contemporary papers on modulation recog-
nition, signal separation, and Single Station Location (SSL) in the context of HF radio-communications by
Giesbrecht, Clarke, and Abbott.2 The paper investigates possible methods for recognizing HF modulations.
One method3 that is being used for language, text, and author identification may also be useful for HF modula-
tion recognition. Another method relies on coherence estimates of HF signals. Hence the objective of this paper
is to compare these methods and comment on their use in HF modulation recognition.

2. MODULATION RECOGNITION

The process of determining the modulation type of a signal with no foreknowledge of the signal modulation
characteristics is known as modulation recognition. This field has been a topic of research since the mid-1980s.
During those early days, modulation recognition was accomplished through multiple hardware demodulators –
one for each modulation type of interest. With the advent of software radio, these multiple demodulators are
being combined in software. With either method, the purpose of modulation recognition is to determine the type
of modulation so that the correct demodulator can be chosen to demodulate the signal.

Fundamental processes of modulation recognition are feature extraction and classification (see Figure 1).
Feature extraction determines unique characteristics of the signal so that a classifier can establish the modulation
type. Common features include instantaneous amplitude, variance of phase, spectral symmetry, transmission
models, and higher order statistics. Classification associates features with modulation types. These associations
are normally made through threshold detection logic, artificial neural networks (ANNs), or pattern recognition
algorithms.

Figure 1. A typical modulation recognition structure.

Hero4 and Nolan et al5 described statistical methods for feature extraction and used threshold detection
logic for feature classification. Their methods were able to correctly recognize various types of phase-shift-keying
(PSK) and frequency-shift-keying (FSK). However, their assumptions of additive white Gaussian noise (AWGN),
ideal bandpass filtering, Rayleigh fading, Doppler effects, or uniformly distributed phase noise are not generally
valid for HF communications. Nor have they included in their papers any field-testing of their methods. Ketterer6

et al also applied statistical methods and threshold detection to tackle the modulation recognition problem. But
in this case, they demonstrated the robustness of their algorithm by applying it to a real-world short-wave radio
signal having symbols identical to their synthetic data.

Others have taken a hybrid approach to modulation recognition. Wong and Nandi7 described a feature
extraction and classification algorithm for discriminating PSK, FSK, V.29 and V.32 (modem modulation stan-
dards), and QAM. Feature extraction was obtained through statistical methods, while classification was based on
ANNs. Without noise and with suitable training, their method was capable of recognizing the modulation types
with no error. With signal-to-noise ratios (SNRs) of 15 dB and 20 dB, their algorithm was able to recognize
the modulation types with less than 10% error. The authors, however, do not mention the noise model for their
simulations and do not consider the effects of real noise (an SNR of less than 15 dB is quite common for radio
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communications), multi-path, or Doppler shifts on the performance of the system. All of these strongly influence
HF communications and so it is doubtful that the performance figures they quote are achievable for practical
HF transmissions.

Waller and Brushe8 addressed the problem of modulation recognition in a completely different way. Instead
of pattern recognition, parameter estimation, or neural networks, the authors chose the best model of the
transmission system based on observations of the noisy received signal. They focused on frequency modulation
(FM) and phase modulation (PM) and used a cross-correlation approach that gave rise to characteristic peaks
for FM or PM. This was based on the assumption that another recognition system had already determined that
the signal was some form of angle modulation (FM or PM). For the estimation, the researchers passed the signal
through parallel FM and PM demodulators. The output signal from each of the demodulators was re-modulated
with parallel FM and PM modulators using an estimate of the carrier frequency of the received signal. The
outputs of the four modulators were then correlated with the original received signal to determine the type of
modulation. However, their identification of correlation peaks relies on appropriate threshold detection and in
this sense, their method is no different from many other researchers.4,5, 9

It is clear that much current research on modulation recognition concentrates on trial-and-error and statistical
methods, threshold detection logic, pattern recognition techniques, or artificial neural networks. A number of
these have been described above. All perform two basic functions: feature extraction and signal classification;
and all suffer a common problem.

The problem is that of practical validity. Many researchers claim success of their methods based on assump-
tions of additive-white-Gaussian-noise, propagation characteristics, simulated data, and somewhat arbitrary
thresholds. Validation raises many questions. Are the chosen correlation thresholds valid for HF communica-
tions? What is the real noise distribution for the HF band? Are the assumed propagation characteristics valid
in all situations? What is the best way to determine the modulation type? Are brute-force methods (e.g. those
of Waller and Brushe or the Coherence method) better than statistical methods? Is there a benchmark signal
or benchmark noise distribution that could be used to verify modulation recognition methods for the HF band?
If a recognition technique fails in the field, why did it fail, and how can it be improved to operate successfully?
Which recognition method is the most robust and able to handle real data?

The modulation recognition methods presented above do not adequately rationalize the choice of thresholds
and feature functions. Moreover, they do not assume appropriate noise and channel models10, 11 for application
of their methods to the HF band, and they do not apply their methods to real signals (cf. Ketterer6). A key
difference of the research presented here is that real HF signals containing real noise and interference are used
instead of simulated data.

3. METHODS

Two methods are discussed that may, with suitable modification, be useful for identifying various HF modulations.
The metric of entropy between information sources provides a promising approach to the problem. Estimates of
coherence functions may also provide useful signatures for signal identification.

3.1. Entropic Distance
Benedetto, Caglioti, and Loreto3 presented a method whereby the similarity or dissimilarity of two information
sources, A and B, was defined by their relative entropy. They compressed a long sequence A from A and
subtracted the compressed length from the length of the compressed sequence A + b, where A + b was the
concatenation of A and a small sequence b from B. This was defined as the entropy of A (designated by ∆Ab).
In a similar manner they computed the entropy of B as ∆Bb. They then defined the relative entropy between A
and B as

SAB =
∆Ab − ∆Bb

|b| , (1)

where |b| was the length of b, and the relative entropy between B and A as

SBA =
∆Ba − ∆Aa

|a| , (2)
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where |a| was the length of a small sequence of A. The total relative entropy, or entropic distance, between the
two information sources was then

ST = SAB + SBA. (3)

By applying the algorithm to language recognition, authorship attribution, and classification of sequences they
were able to successfully identify languages and authors. For example, the method was able to successfully
distinguish between Dutch, Danish, English, French, Finnish, German, Italian, Portuguese, Spanish, and Swedish.
It was also able to correctly identify the author of a text 93.3% of the time. And for language classification, the
method was able to correctly classify the romance, celtic, germanic, slavic, and baltic languages.

In the research presented here, the information source A consists of a down-converted HF signal of the types
in Table 1. Furthermore, B also consists of a down-converted HF signal of types in the table. The idea then, is
to determine the entropic distance between various combinations of different HF signals.

The entropic distance is computed for pairs of down-converted signals at various transmit power levels (see
Section 5) and at various |b| and |a|. The length of b or a is varied between 0.1% and 10%, in 0.1% steps, of the
total length of a reference sequence. The reference sequence is either B in Equation 1 or A in Equation 2.

3.2. Coherence

Another method that may be useful for modulation recognition is the coherence function. In general, the
coherence function is analogous to correlation coefficients in the frequency domain. Consider the power-spectral
density of a signal X . It is defined as

Pxx(f) =
∫ ∞

−∞
ρxx(τ)e−j2πfτ dτ (4)

where f is frequency, τ is time delay, and ρxx(τ) is the auto-correlation function of X . In a similar manner, the
cross-spectral density is defined by

Pxy(f) =
∫ ∞

−∞
ρxy(τ)e−j2πfτ dτ (5)

where ρxy(τ) is the cross-correlation of signals X and Y . From these definitions the coherence function is the
cross-spectral density normalized by the respective power-spectral densities;

Cxy(f) =
|Pxy(f)|2

Pxx(f)Pyy(f)
. (6)

For each frequency, the coherence function varies between 0 and 1 and indicates the similarity between X
and Y . If the value of the function at a particular frequency is close to unity, it indicates that X and Y are
similar at that frequency. On the other hand, if the value of the function is near zero it implies that the two
signals are dissimilar at the particular frequency.

This work estimats the coherence function, using Welch’s12 averaged periodogram method, of pairs of down-
converted signals at various transmit power levels (see Section 5). Welch’s method breaks the sequences into
overlapping sections. Each overlapping section is detrended and windowed by a 2048-point Hanning window
before a 2048-point Fast Fourier Transform (FFT) is applied.

4. RESEARCH PLATFORM

An HF Monitoring System and research platform is currently under development at Ebor Computing. This
monitoring system consists of an array of antennas, followed by signal conditioning electronics, multiple digital
receivers, and a data processing sub-system (see Figure 2).

The Analog RF Subsystem consists of antennas, amplifiers, attenuators, and filters. Outputs of this subsys-
tem are fed to a rack of digital receivers that directly sample RF signals up to 50 MHz and down-convert the
HF channels to baseband. The digitization of the RF signals is achieved by high-speed analog-to-digital con-
verters (ADCs). Down-conversion is accomplished with digital-down-converters (DDCs). The Data Processing
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Subsystem collects the baseband information and processes it. Processing includes functions such as modulation
recognition, signal separation, and SSL. A Remote Management System oversees the operation of the entire
system. The research platform operates independently of the Data Processing Subsystem and Remote Manage-
ment System. It also includes a remotely-controlled test-transmitter with HF modem (not shown) that sends
groundwave signals to the HF Monitoring System.

Figure 2. Architecture of the HF monitoring system.

5. DATA COLLECTION

An HF modem (British Aerospace ARM-9401) was setup with a 1 W HF transmitter approximately 300 m from
the antenna array of the HF Monitoring System. At this distance, the HF Monitoring System was able to receive
groundwaves from the transmitter that arrived relatively unattenuated and undistorted but still containing noise
and possibly interfering signals. The modem was capable of a number of different modulation schemes, however,
only the four in Table 1 were considered in this work.

In turn, each of the four different modulation schemes were transmitted by the HF modem on 15.824 MHz
USB (upper side-band). The research platform applied a 3 kHz low-pass filter on the received signal since
channels in the HF spectrum are generally 3 kHz wide and the chosen modulations had bandwidths of 3 kHz.
Furthermore, each modulation type was transmitted at various power levels: -30 dBm, -24 dBm, -18 dBm, and
-12 dBm.

6. RESULTS

6.1. Entropic Distance Results
There are six unique pairs (see Table 2) of the four modulation types. Computing the entropic distances between
each pair results in two groups of distances: Group I and Group II. Pairs in Group I are separated by small
entropic distances while pairs in Group II have relatively large entropic distances between them. Figure 3 is
typical of signal pairs in Group I except for self-pairs (i.e. any one modulation versus itself such as 8-PSK vs.
8-PSK) which always results in entropic distances of zero. Figure 4 is typical of signal pairs in Group II. Clearly,
the shape and magnitude of the curves for Group I differ from those of Group II.

Entropic distances between pairs in Group I are quite small, generally between 0.1 and 0.4, whereas distances
between Group II pairs vary between 0.25 and 2.7. What this implies is that for all lengths, |b| or |a|, the pairs
in Group I are more similar to each other then the pairs in Group II.
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Table 1. HF Modulation Types

Modulation Standard Characteristics
8-PSK Stanag 4285 75 baud long interleaving

Single Tone Sub-Carrier 1800 Hz
Bandwidth 600-3000 Hz

FSK Alt. Wide Mil-Std-188-110A 75 baud no interleaving
Sec. 5.1.1 (HF Narrow) Mark:1915 Hz Space:2085 Hz

FSK Narrow Mil-Std-188-110A 75 baud no interleaving
Sec. 5.1.3 (LF UHF Speech+Telephony) Mark:2762.5 Hz Space:2847.5 Hz

FSK Wide Mil-Std-188-110A 75 baud no interleaving
Sec. 5.1.2 (HF Wide) Mark:1575 Hz Space:2425 Hz

Another noticeable difference between the two groups is that the transmit power level does not affect the
entropic distances in a linear manner. For example, one would expect that as the transmit power was varied up
or down the entropic distance between pairs of signals would change accordingly. However as both figures show,
the -18 dBm curve is below the -12 dBm curve, but the -24 dBm and -30 dBm curves are above the -12 dBm
curve. It could be expected that the -12 dBm curve and -18 dBm curve should be interchanged.

Nevertheless, the figures do reveal that for longer appended sequences (i.e. b or a), a difference in transmit
power level can be detected as a change in entropic distance. It may also be possible to identify the signal
modulation if it can be proven that particular entropic distances are associated with particular signal pairs and
signal levels. This is a subject of further work.

Table 2. Pairs of modulation types

Group Pair Combination
I 1 8-PSK vs. FSK Alt. Wide
I 2 8-PSK vs. FSK Wide
I 3 FSK Alt. Wide vs. FSK Wide
II 4 8-PSK vs. FSK Narrow
II 5 FSK Narrow vs. FSK Wide
II 6 FSK Alt. Wide vs. FSK Narrow

6.2. Coherence Results

The coherence function is estimated for each of the signal pairs discussed above. For reference, Figure 5 illustrates
the power-spectral densities of the individual signals in Table 1 and clearly shows the differences between the
signals.

Figure 6 shows coherence functions that are typical for each pair of signals at the various transmit levels. As
implied by the power-spectral densities, the coherence functions illustrate the dissimilarities between the four
modulation types. That is, the values at each frequency are quite small. However, for self-pairs the coherence
function is always unity. This highlights the weakness and strength of the coherence function. For example,
though FSK Alt. Wide and FSK Wide differ only in the mark and space frequencies the coherence function
indicated a low score (i.e. highly dissimilar modulations). One would expect that a somewhat higher score would
be have been achieved because both methods were FSK. On the other hand, the coherence function yielded a
high score if it was applied to self-pairs or signal pairs that were nearly the same so that a definite identification
was possible. It is therefore obvious that the coherence function must be considered a brute-force approach.
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Figure 3. Entropic distances between 8-PSK and FSK Wide (Group I).

Figure 4. Entropic distances between FSK Narrow and FSK Wide (Group II).

82     Proc. of SPIE Vol. 5473

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/12/2012 Terms of Use: http://spiedl.org/terms



The coherence functions also appear to vary with the transmit power levels, though not in a consistent
manner. The differences may have been due to variations in the HF environment as much as they were due to
changes in transmit power level.

For now, the results raise more questions than they answer. Does the coherence function for a signal pair
convey the same relative closeness (or distance) that the previous method shows? Does a signal pair have
a characteristic coherence function that can be used as an identifying signature? These questions stimulate
directions for research.

Figure 5. Power-spectral densities of various HF modulations.

Figure 6. Coherence functions for FSK Narrow and FSK Wide.
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7. SUMMARY AND FUTURE WORK

Two methods for recognizing HF modulation schemes were discussed. One technique measured the entropy
between pairs of modulated HF signals. The other method attempted to identify similarities between pairs of
HF signals based on estimates of the coherence function.

Preliminary results show that it may be possible to identify a modulation based on the entropic distance
between it and another modulation. It may also be possible to detect a difference in transmit power level
between two modulated HF signals.

The coherence function does not, at first glance, appear to easily identify the modulation type of a HF signal.
However, it may be that the coherence function can provide a signature that is identifiable with a particular
modulation type.

Additional sample sets of real HF signals need to be collected and analyzed to validate the suitability of the
presented methods for HF modulation recognition. Furthermore, a benchmark for each modulation type needs
to be found and established so that other methods can be measured against it.
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