
Modulation Recognition for HF Signals

James E. Giesbrechta,b,c, Russell Clarkec, and Derek Abbotta,b

aCentre for Biomedical Engineering, The University of Adelaide, SA 5005, Australia
bSchool of Electrical & Electronic Engineering, The University of Adelaide, SA 5005, Australia

cEbor Computing, 147 Henley Beach Rd., Mile End, SA 5031, Australia

ABSTRACT

High-frequency (HF) communications is undergoing resurgence despite advances in long-range satellite com-
munication systems. Defense agencies are using the HF spectrum for backup communications as well as for
spectrum surveillance applications. Spectrum management organizations are monitoring the HF spectrum to
control and enforce licensing. These activities usually require systems capable of determining the location of a
source of transmissions, separating valid signals from interference and noise, and recognizing signal modulation.
Our ultimate aim is to develop robust modulation recognition algorithms for real HF signals, that is, signals
propagating by multiple ionospheric modes.

One aspect of modulation recognition is the extraction of signal identifying features. The most common
features for modulation recognition are instantaneous phase, amplitude, and frequency. However, this paper
focuses on two feature parameters: coherence and entropy. Signal entropy and the coherence function show
potential for robust recognition of HF modulation types in the presence of HF noise and multi-path. Specifically, it
is shown that the methods of calculation of coherence and entropy are important and that appropriate calculations
ensure stability in the parameters. For the first time a new metric, called Coherence-Median Difference (CMD),
is introduced that provides a measure of the dominance of coherence at specific frequencies to coherence at all
other frequencies in a particular bandwidth.
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1. INTRODUCTION

The HF radio band (nominally 2 MHz to 30 MHz) can be used for long-distance wireless communications,
because the ionosphere and its various layers refract transmissions in this band. Such refraction enables signals
to propagate beyond the horizon to distant receivers unable to be reached by higher frequency (VHF and above)
signals. This fact makes the HF band attractive for private and commercial interests as well as for defense forces
spread across the globe. For example, spectrum management agencies monitor the HF band for unlicensed
operators and military agencies use the HF band for communications.

In the past, HF communication systems were analog. This meant that signals received by an antenna were
down-converted to baseband using filters, oscillators, and many discrete components. Receivers were generally
constructed in a super-heterodyne configuration.1 The baseband signals were then passed through demodulators
to extract the information content. Often special demodulators had to be switched in to demodulate signals
with different modulation schemes.

Today there are so many different modulation techniques that monitoring and detection of such signals using
traditional methods would require numerous HF receivers. Monitoring and detection would also require some
prior knowledge of the signals so as to choose the correct receiver. However, with the advent of software radio
this task is much easier.

Software radio aims to replicate hardware functions in software running on a generic platform. In so doing
many of the problems associated with hardware implementations are avoided. In addition, the receiver and
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transmitter chains can easily be changed to accommodate various modulation schemes. Here is where modulation
recognition plays an important role. Modulation recognition enables a receiver to automatically switch in the
correct software defined demodulator for a particular signal.

This paper continues the work presented earlier by Giesbrecht, Clarke, and Abbott.2, 3 In the previous work
we discussed the preliminary application of coherence4 and entropy5 to real HF signals. This work discusses in
more detail the fundamentals of coherence and entropy and how they might be used in modulation recognition.

2. MODULATION RECOGNITION

The process of determining the modulation type of a signal with no foreknowledge of the signal modulation
characteristics is known as modulation recognition. Fundamental processes of modulation recognition are feature
extraction and classification. Feature extraction determines unique characteristics of the signal so that a classifier
can establish the modulation type. Common features include instantaneous amplitude, variance of phase, spectral
symmetry, transmission models, and higher order statistics. Classification associates features with modulation
types. These associations are normally made through threshold detection logic, artificial neural networks (ANNs),
or pattern recognition algorithms.

Previous work2, 3 on real HF signals has shown that most recognition methods do not adequately rationalize
the choice of thresholds and feature functions. Moreover, they do not assume appropriate noise and channel
models for application of their methods to the HF band, and they do not apply their methods to real signals.
Figure 1 illustrates power spectra of typical HF signals.

Nevertheless, the most common features are statistical measures of instantaneous amplitude, phase, and
frequency.6–9 Others have considered zero-crossings, covariance, and higher-order statistics (e.g. mth -order
cumulants and kurtosis).10–14 This work concentrates on the fundamentals of coherence and signal entropy as
they apply to modulation recognition.
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Figure 1. Power spectra of various real HF signals. The NATO Stanag 4285 is an 8-PSK signal while the other plots are
of 2-FSK signals.

3. SIGNAL FEATURES

3.1. Signal Entropy
Shannon’s15 work in communication shows that entropy is the uncertainty in one’s ability to predict the output
of a data source and is equal to the information provided by that source when an event occurs. Moreover, entropy
is defined as

H(X) =
N∑

i=1

P (xi)I(xi) (1)

where P (xi) is the probability of the ith character in an alphabet of N characters that makes up the data
source represented by the random variable X, and I(xi) is the self-information provided by the ith character.
Self-information is defined as

I(x) = − logN P (x). (2)

502     Proc. of SPIE Vol. 5649

Downloaded From: http://spiedigitallibrary.org/ on 10/22/2012 Terms of Use: http://spiedl.org/terms



Hence for a binary digital signal with characters 0 and 1 the entropy is

H(X) = −P (0) log2 P (0) − (1 − P (0)) log2 (1 − P (0)) (3)

where P (0) is the probability of a zero-bit and 1 − P (0) is the probability of a one-bit.

For entropy computed over the length of a message Shannon shows that, provided successive symbols are
statistically independent, (1) can be estimated by

Ĥ(X) =
1
L

L∑

i=1

P̂ (xi)Î(xi), (4)

where L is the number of symbols in the message that contains a distribution of all possible symbols, P̂ (xi) is
an estimate of the probability of each symbol in the set of all possible symbols, and Î(xi) is an estimate of the
information provided by each symbol, such that

lim
L→∞

Ĥ(X) = H(X). (5)

Benedetto, Caglioti, and Loreto5 present a method whereby the similarity or dissimilarity of two information
sources, A and B, is defined by their relative entropy. They compress a long sequence A from A and subtract the
compressed length, LA, from the compressed length (LAb) of the sequence A+b, where A+b is the concatenation
of A and a small sequence b from B. This difference is normalized by the length of b (represented by |b|), to
arrive at the entropy of A:

SAb =
LAb − LA

|b| . (6)

The entropy of B with respect to A is similarly calculated. However in the work presented here we consider
only SAb in relation to H(X).

In the context of modulation recognition why bother with this entropy-compression technique? Firstly, it
is a relatively new method that has not previously been thoroughly compared to Shannon’s method and may
provide some benefit for modulation recognition. Secondly, as shall be seen later, it is sensitive to the message
structure whereas Shannon’s method is not. And lastly, it is a subject of ongoing investigation as to whether or
not signal entropy provides a useful parameter for recognition of signal modulation.

This work attempts to answer the following questions. How does SAb compare with H(X) for various
probabilities of a zero-bit? Does the compression method used for SAb play a role? What is the affect of |b| on
the entropy calculations? And, how can entropy be used in modulation recognition?

3.2. Coherence
Another measure that appears useful for modulation recognition is the coherence function. In general, the
coherence function is analogous to correlation coefficients in the frequency domain. Consider the power-spectral
density of a signal X . It is defined as

Pxx(f) =
∫ ∞

−∞
ρxx(τ)e−j2πfτ dτ (7)

where f is frequency, τ is time delay, and ρxx(τ) is the auto-correlation function of X . In a similar manner, the
cross-spectral density is defined by

Pxy(f) =
∫ ∞

−∞
ρxy(τ)e−j2πfτ dτ (8)

where ρxy(τ) is the cross-correlation of signals X and Y . From these definitions the coherence function is the
cross-spectral density normalized by the respective power-spectral densities;

Cxy(f) =
|Pxy(f)|2

Pxx(f)Pyy(f)
. (9)
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For each frequency, the coherence function varies between 0 and 1 and indicates the similarity between X and
Y . If the value of the function at a particular frequency is close to unity, it indicates that X and Y are similar
at that frequency. On the other hand, if the value of the function is near zero it implies that the two signals are
dissimilar at the particular frequency. Furthermore, if the coherence is unity it necessarily means that X and Y
are correlated.

Carter’s4 excellent treatise on the estimation of coherence shows that the coherence between X and Y is also
related to the signal-to-noise ratio (SNR) of Y assuming that X is the transmitted signal and Y is the noisy
received signal. In this description

Cxy(f) =
SNRy(f)

1 + SNRy(f)
, (10)

where

SNRy(f) =
Pxx(f) |H(f)|2

Pnn(f)
, (11)

and where H(f) is the transfer function of the transmission channel and Pnn(f) is the power-spectral density of
the received noise. Note that with this definition, a coherence of unity not only demonstrates complete correlation
of X and Y but also implies an infinite SNR since in the limit as SNRy(f) → ∞ the coherence tends to 1.

Despite the simplistic appearance of (9) and (10) the calculation and measurement of coherence can be quite
difficult. For example Proakis16 demonstrates that the calculation of the power spectral densities of FSK signals,
and therefore coherence, is not an easy task. Therefore coherence is usually estimated. Carter4 points out
that the coherence function between two signals is extremely sensitive to misalignment in time. He suggests
that the best methods to estimate coherence are weighted overlapping segment averaging (WOSA) (e.g. Welch’s
periodgram method17) and lag reshaping. For each of these techniques the signals are broken into windowed
overlapping segments. As the number of segments increase, the variance of the coherence estimate decreases.
Moreover, the percentage of overlap between segments affects the bias. The bias in the estimate of coherence
decreases as the percentage overlap increases. However there is a point of diminishing returns (i.e. about 50% -
60% overlap) where further increase in overlap provides minimal reduction in the bias. Consequently, an accurate
estimate of coherence depends on the choice of number of segments, percentage overlap, and windowing method.

So, how does coherence vary with the message in the signal? How does the coherence of a signal vary with
SNR and frequency? Furthermore, how can coherence be used to identify a signal’s modulation?

3.2.1. Coherence-Median Difference

Related to coherence we define the coherence-median difference (CMD) for FSK signals as the difference between
the mean of the coherences at the symbol frequencies less the median coherence over a bandwidth of interest.
CMD is described by

CMD =
1
M

M∑

i=1

Cxy(fi) − median(Cxy(f)∀f ∈ BW) (12)

where fi is the ith symbol frequency, M is the number of modulation levels (or symbol frequencies), and BW is
the bandwidth over which the CMD is computed. For a BFSK signal with two symbol frequencies (the so-called
mark and space frequencies), (12) reduces to

CMD =
Cxy(fm) + Cxy(fs)

2
− median(Cxy(f)∀f ∈ BW) (13)

where fm and fs are the mark and space frequencies respectively.

Positive CMD indicates that the coherence at the symbol frequencies is above the coherence at all other
frequencies in the bandwidth of interest. Negative or zero CMD implies that the coherence at other frequencies
dominate the coherence across the bandwidth as a result of 1) poor selection of the number of overlapping
segments, 2) poor selection of the amount of overlap, and/or 3) truly poor coherence between X and Y . Later
it will be seen that the CMD can be used to provide a measure of certainty that the peak coherence is indeed
that of the mark or space frequencies.
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4. METHOD AND RESULTS
4.1. Signal Entropy
Two binary sequences A and B, with equal probability of a zero-bit, were created to compare the entropy as
defined by (1) with that of (6). The compression algorithm used for (6) was the LZW algorithm with 12-bit
codes. The probability of a zero-bit was varied and plotted in Figure 2.
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Figure 2. Shannon’s entropy versus entropy computed with (6) for various zero-bit probabilities and lengths of appended
sequences. The message length is 10,000 bits with the probability of a zero-bit as shown on the abscissa. The probability
of a zero-bit in the appended sequence is equal to the probability of a zero-bit in the message. Each data point is the
average entropy of a 3-trial experiment in which each trial consists of generating a random message of the required length
and zero-bit probability and then computing the entropy of the message for each of the appended sequence lengths.

As can be seen, the length of b does not greatly affect SAb. In fact, SAb greatly underestimates H(X). At
a probability of 0.5, SAb underestimates H(X) by 70%! Now if |b| is held constant and the number of samples
varied, as in Figure 3, SAb comes much closer to H(X) but with slight skewing. The variance of the samples
on the curves also appears to increase. For message lengths of 100 and |b| = 25 the entropy SAb approaches
Shannon’s entropy curve and at times surpasses it.

If SAb is plotted (see Figure 4) as a function of the length of the message and |b| it becomes clear that entropy
is relatively flat for long messages and large |b|. Only when the message length decreases and |b| decreases is
there a “hill” in the entropy at the origin. In addition, the entropy is slightly more sensitive to changes in |b| as
the message length decreases than for changes in message length as |b| decreases.

In part, this behavior is explainable by considering the operation of the compression algorithm. As the length
of A decreases the dictionary being built by the compression algorithm becomes smaller because there are fewer
message bits. And because the dictionary is smaller, when the compressor begins compressing the part of the
sequence attributed to b, it finds new words that are not in the dictionary and therefore requires longer codes
to encode the new words. This in turn gives rise to a larger entropy measure because the algorithm compresses
A+ b less efficiently than it does for longer sequences of A+ b. Consequently, there is a rise in the entropy as the
length of A decreases for most lengths of b. For the case of small lengths of b, the randomness of the message
begins to affect the entropy more pronouncedly. This is evidenced by the “spikes” in the surface at low |b|.

The entropy “hill” noted above is also partly a result of inefficiencies in the compression algorithm. If one
considers the performance of the LZW algorithm as compared to another compression algorithm, say Zip 2.3∗,
it is apparent why the entropy rises at the origin in Figure 4. Figure 5 shows that the 12-bit LZW algorithm
is generally less efficient than the Zip 2.3 algorithm and it is also less efficient at compressing 1’s than it is
at compressing 0’s†. It is this skewing effect that yields the skewing in entropy seen previously. When (6) is
recomputed using Zip 2.3 a much more consistent entropy results. Figures 6 and 7 illustrate this.

∗Zip 2.3 is based on the search algorithm of Rabin and Karp18 and the compression algorithm of Fiala and Greene.19

†A 14-bit LZW algorithm is similarly inefficient.
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Figure 3. Entropy for various message lengths (N) and |b| ∈ {25, 250}. Entropy is computed in the same fashion as
Figure 2 with the exception that the appended sequence is constant for varying message lengths. As the message length
decreases the entropy curve via Benedetto’s method approaches Shannon’s entropy curve. The “roughness” of the curve
increases as the appended length decreases (cf. left against right). Skewing is due to the LZW compression algorithm.
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Figure 4. Surface plot of entropy as determined by (6) for various message lengths (N) and |b|. In both diagrams the
probability of a zero-bit in the message is P (X = 0) = 0.5. The probability of a zero-bit in the appended sequence is
P (B = 0) ∈ {0.1, 0.9}. The rise in the surface at the origin is due to the LZW compression algorithm.

0

0.5

1 0

500

1000

0

200

400

600

800

Length of Message

Compressed Message Length using Lempel−Ziv Compression

Probability of Zero Bit

C
om

pr
es

se
d 

Le
ng

th
 o

f M
es

sa
ge

0

0.5

1 0

500

1000

100

150

200

250

300

350

400

Length of Message

Compressed Message Length using Zip 2.3 Compression

Probability of Zero Bit

Figure 5. Surface plots of 12-bit LZW and Zip 2.3 compression algorithms for various message lengths and zero-bit
probabilities.

506     Proc. of SPIE Vol. 5649

Downloaded From: http://spiedigitallibrary.org/ on 10/22/2012 Terms of Use: http://spiedl.org/terms



0

500

1000

0

500

1000

0

0.05

0.1

0.15

0.2

Length of Appended Sequence

Entropy by Benedetto’s Method for P(x=0)=0.5

Length of Message

E
nt

ro
py

 (
S

el
f−

In
fo

rm
at

io
n 

of
 D

at
a 

S
ou

rc
e)

P(b=0)=0.1 
Zip 2.3 Compression

0

500

1000

0

500

1000

0

0.05

0.1

0.15

0.2

Length of Appended Sequence

Entropy by Benedetto’s Method for P(x=0)=0.5

Length of Message

E
nt

ro
py

 (
S

el
f−

In
fo

rm
at

io
n 

of
 D

at
a 

S
ou

rc
e)

P(b=0)=0.9 
Zip 2.3 Compression

Figure 6. Surface plot of entropy, as determined by (6) using the Zip 2.3 compression algorithm, for various message
lengths, N , and |b|. In both diagrams the probability of a zero-bit in the message is P (X = 0) = 0.5. The probability
of a zero-bit in the appended sequence is P (B = 0) ∈ {0.1, 0.9}. The rise at low |b| is consistent with the observation in
Figure 3 while the “spikes” are attributed to the randomness of the message.
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Figure 7. Comparison of entropy of (6) computed with Zip 2.3 compression and Shannon’s entropy formula. Compare
this with that of Figure 2. Though the overall entropy is lower, the skewing present in Figure 2 is not present here.

Next, consider two binary sequences of length L consisting of L
2 binary 1’s and L

2 binary 0’s and having
identical probability distributions. Suppose that one sequence, S1, has a completely random arrangement of the
1’s and 0’s, and the other sequence, S2, has a structured arrangement such that the first L

2 binary digits are
consecutive 0’s and the second L

2 binary digits are consecutive 1’s (the reverse can likewise be supposed). In
such a case, Shannon’s method in (4) will compute identical entropies for S1 and S2 while Benedetto’s method
in (6) will not. Figure 8 shows that Shannon’s method is insensitive to the structure of the message as would
be expected from the definition of the entropy. For large L, Benedetto’s method shows a marked difference in
entropy between S1 and S2. The reasons for this behavior are not immediately apparent and are still a subject
of investigation.

The conclusion of all of this is that the compression algorithm used in computing (6) plays a critical role.
If an inefficient compressor is used, the measured signal entropy can vary with not only the message but the
compressor as well! An efficient and consistent compressor is needed for good estimates of entropy. However,
the usefulness of entropy in modulation recognition is still unknown because entropy can vary with the message.
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Figure 8. Entropy (left) as computed by Shannon’s method and Benedetto’s method for a message with a random
arrangement of bits and a message with a structured arrangement of bits (right). Zip 2.3 compression is used for the
calculation of entropy by Benedetto’s method.

4.2. Coherence

4.2.1. Coherence vs. Hamming Distance

Two arbitrary BFSK signals were produced to study the effects of the message on the coherence between a
transmitted signal and its noisy received counterpart. The mark frequency (fm) for each signal was 3 kHz and
the space frequency (fs) was 1 kHz. During spectral processing fm and fs did not necessarily fall in specific
frequency bins so Cxy(fm) and Cxy(fs) were estimated using linear interpolation between the coherence computed
at adjacent frequency bins. To simulate bit errors in the received signal Y , the Hamming distance between Y
and the original transmitted signal X‡, was varied and the coherence computed using methods suggested by
Carter.4 X was generated with a uniform distribution of marks (1’s) and spaces (0’s). For each Hamming
distance Y = f(X, d) where f(X, d) was a function that returned X with a random selection of d bits (the
Hamming distance) inverted. For example, when d was zero f(X, d) returned X , and when d was ten, f(X, d)
returned X with 10 randomly chosen bits inverted.

Figure 9 illustrates the effects of Hamming distance on coherence between X and Y . We immediately observe
that the curvature of the coherence decreases as the length of the message increases (in this study message length
is equal to the maximum Hamming distance shown). Furthermore, the CMD indicates that the peak coherence
is generally dominated by the coherence at the mark and space frequencies and that as the length of message
increases the peak coherence averages out above 0.6. This suggests that for long messages the coherence function
can be used to identify BFSK signals with a thresholding technique.

The peak coherence also follows closely the coherence at fs. The fact that the peak coherence is larger than
the coherence at fs indicates that the interpolation used to compute the coherence is underestimating the true
coherence at that frequency. A parabolic interpolator would provide a better estimate.

Finally, the CMD gradually increases from zero because at low Hamming distances the average coherence at
the mark and space frequencies is near the median coherence.

Now, why does the coherence vary with the message? Consider the power spectrum of two BFSK signals
with no noise or interference. If each BFSK signal consists of the first half being marks and the second half
spaces there would be two relatively “clean” tones in each of the respective power spectrums. The coherence
between these two BFSK signals will be near unity. However, as the distribution of marks and spaces of the
second BFSK signal becomes more uniform the resulting numerous symbol transitions spreads the signal energy
over many more frequencies. So even though the second BFSK signal contains the same tones as the “clean”
signal, the overall coherence is affected because the signal energy is spread.

‡An alternative interpretation is that Y is an arbitrary BFSK signal being compared against an arbitrary BFSK
reference signal X, with varying levels of correlation.
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Figure 9. Coherence and CMD of two BFSK signals as a function of Hamming distance between the signals. The
figures show coherence and CMD for two BFSK signals each having 40 symbols (upper-left), 80 symbols (upper-right),
160 symbols (lower-left), and 320 symbols (lower-right). Shown are coherences for the mark and space frequencies, the
mean of the coherence of the mark and space frequencies, the peak coherence across the bandwidth of interest, and the
CMD. As the number of symbols increase the slopes of the coherence curves decrease. In each figure the CMD is positive
indicating that the coherence at the mark and space frequencies dominate the coherence function across the bandwidth
of interest. A sliding boxcar window of 7 samples is used to smooth the plots.

In all cases as the Hamming distance increases the coherence decreases. Moreover, as the Hamming distance
increases the power spectra of the two BFSK signals become less and less similar. Eventually a Hamming
distance is reached that makes the two BFSK signals very different and hence the coherence is low. However, the
coherence tends toward unity as the message length increases because each incremental change in the Hamming
distance becomes less and less significant.

4.2.2. Coherence vs. SNR

In this experiment the coherence was computed for a 1 kHz tone with varying levels of additive white-Gaussian
noise (AWGN) to study the effects of SNR and frequency. Although AWGN is not representative of noise in the
HF spectrum it will suffice for the sake of the following discussion that shows why coherence estimates need to
account for the signal bandwidth.

Ideally, at an arbitrary frequency coherence versus SNR appears as in Figure 10. This curve represents the
coherence as a function of SNR where the noise is confined to an infinitesimal bandwidth about the arbitrary
frequency.

In reality, SNR can never be defined over an infinitesimal bandwidth. So, if coherence is calculated using
(11) over, say, a 1 kHz bandwidth around the 1 kHz tone we find that the S-curve of Figure 10 shifts right or
left depending on whether the f in Cxy(f) is above or below the 1 kHz tone. This behavior is simply a result
of the fact that the SNR at each frequency in the 1 kHz bandwidth is different. For example, the SNR at the 1
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Figure 10. Coherence versus SNR at an arbitrary frequency where the noise is confined to a very small bandwidth about
that frequency. This is simply a graphical representation of (10).

kHz tone will be much higher than the SNR at 1±∆f kHz since the magnitude of the 1 kHz tone at f = 1±∆f
kHz will be near zero and the noise will be something larger than zero.

If we now specify a bandlimited sinc function (which can be interpreted as a series of tones in the 1 kHz
bandwidth) centered at 1 kHz and then restrict the AWGN to a 600 Hz band around the center we find that the
coherence S-curves in the 600 Hz band fall on top of each other, while the coherence S-curves outside the 600 Hz
band are shifted away from the 0 dB SNR position (see Figure 11). Coherence curves outside the 600 Hz band
(i.e. Cxy(f) for 500 Hz ≤ f ≤ 700 Hz and 1300 Hz ≤ f ≤ 1500 Hz) are not greatly affected by noise and as a
result are shifted left because the SNR at each frequency is very high.

Consequently, it is obvious that coherence is affected by noise bandwidth, signal bandwidth, frequency, and
SNR. It is also apparent that for strong signals and weak noise at a particular frequency the coherence S-curve
moves left. Conversely for weak signals and strong noise at a particular frequency the coherence S-curve moves
right. So, to get a reasonable measure of coherence for an arbitrary signal, the coherence must be computed
over the bandwidth of the signal. If compared against noise, the SNR must be specified over the bandwidth. If
another signal, that signal must also be specified over the bandwidth.

Thus coherence is indeed a “brute-force” method, as proposed previously,3 since it is only useful for deter-
mining whether or not a signal is the same type as a reference signal. For example, if the reference signal is a
BFSK signal with fm = f1 and fs = f2 and the received signal is a BFSK signal with fm = f3 and fs = f4 the
coherence will only indicate that the two signals are not the same. Inferring that the received signal is a BFSK
signal, with different mark and space frequencies, from knowledge of the reference signal and the calculated
coherence is unlikely.

If coherence S-curves are plotted for various Hamming distances between two BFSK signals, as in Section
4.2.1, a series of curves result (see Figure 12). For negative SNR, the curves merge and the coherence drops to
zero which implies that the average coherence at the mark and space frequencies does not dominate the coherence
function. That is, as the noise power increases the two BFSK signals become less and less similar. For positive
SNR the average coherence for the mark and space frequencies is primarily affected by the Hamming distance.

If one considers the CMD curves, the CMD tends to go negative at very low SNR (less than -10 dB) which
indicates that the coherence at frequencies other than the fm and fs dominate the coherence function. The CMD
remains positive for SNR greater than -10 dB as the Hamming distance increases. But, for a Hamming distance
of zero the two BFSK signals are the same and consequently the CMD is zero since the median coherence over
the signal bandwidth is the same as the average coherence between mark and space frequencies.

The high level of coherence for all the noted Hamming distances and for SNR greater than approximately -5
dB, as well as the positive CMD for SNR above -10 dB suggests that the coherence function is a robust “yes/no”
measure to determine whether a received signal is the same modulation as a reference signal.
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Figure 11. Coherence versus SNR and frequency about a bandlimited sinc function (right). The bandwidth of the sinc
function is 1 kHz and the bandwidth of the AWGN is 600 Hz. The projection (left) shows that the S-curves in the 600
Hz band are nearly identical. Curves outside the band are shifted left.
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Figure 12. Average coherence (
Cxy(fm)+Cxy(fs)

2
) at the mark and space frequencies versus SNR (left) and CMD at the

mark and space frequencies versus SNR (right) for various Hamming distances. AWGN is bandlimited to 3 kHz around
fc = fm+fs

2
. As Hamming distance increases coherence decreases at positive SNR. At negative SNR coherence decreases

to zero because the two BFSK signals become less and less similar with increasing noise. Positive CMD indicates that
coherence at the mark and space frequencies dominate the 3 kHz bandwidth. For a Hamming distance of zero, the CMD
drops to zero because the average mark-space coherence is the same as the median coherence for high SNR.

5. SUMMARY AND FUTURE WORK

Two methods for recognizing HF modulation schemes are discussed. One technique measures the entropy between
pairs of modulated HF signals. The other method attempts to identify similarities between pairs of HF signals
based on estimates of the coherence function.

Entropy, as calculated with a compression technique, is shown to greatly depend on the compression method,
is susceptible to inefficiencies in the compression method, and can vary with the message. A clear application of
this method of entropy estimation to modulation recognition is yet to be determined.

The concept of the coherence-median difference (CMD) is introduced and the coherence function, with the
help of CMD for BFSK signals, shows great promise in being able to identify whether or not a received signal has
the same modulation as a reference BFSK signal. For BFSK signals with long messages, the coherence function
tends to rise above 0.6 and therefore a “brute-force” thresholding technique is a possible classification algorithm.

Future work will apply the knowledge presented here to the sample sets of real HF signals collected earlier.2, 3

The current research focus is building the analysis portion of the research platform presented in the previous
work.
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